Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 12(9): e1005871, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27636895

RESUMO

Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1ß and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs.


Assuntos
Infecções por Adenoviridae/imunologia , Adenovírus Humanos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Proteínas de Ligação a DNA/imunologia , Piroptose/imunologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/genética , Caspase 1/metabolismo , Células Dendríticas/imunologia , Humanos , Imunidade Inata , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Fosfato
2.
Glycobiology ; 22(8): 1086-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22522600

RESUMO

Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galß1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid.


Assuntos
Adenovirus Caninos/genética , Proteínas do Capsídeo/metabolismo , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas do Capsídeo/genética , Cães , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética
3.
Stem Cells ; 29(5): 812-24, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21433223

RESUMO

Because stem cells are often found to improve repair tissue including heart without evidence of engraftment or differentiation, mechanisms underlying wound healing are still elusive. Several studies have reported that stem cells can fuse with cardiomyocytes either by permanent or partial cell fusion processes. However, the respective physiological impact of these two processes remains unknown in part because of the lack of knowledge of the resulting hybrid cells. To further characterize cell fusion, we cocultured mouse fully differentiated cardiomyocytes with human multipotent adipose-derived stem (hMADS) cells as a model of adult stem cells. We found that heterologous cell fusion promoted cardiomyocyte reprogramming back to a progenitor-like state. The resulting hybrid cells expressed early cardiac commitment and proliferation markers such as GATA-4, myocyte enhancer factor 2C, Nkx2.5, and Ki67 and exhibited a mouse genotype. Interestingly, human bone marrow-derived stem cells shared similar reprogramming properties than hMADS cells but not human fibroblasts, which suggests that these features might be common to multipotent cells. Furthermore, cardiac hybrid cells were preferentially generated by partial rather than permanent cell fusion and that intercellular structures composed of f-actin and microtubule filaments were involved in the process. Finally, we showed that stem cell mitochondria were transferred into cardiomyocytes, persisted in hybrids and were required for somatic cell reprogramming. In conclusion, by providing new insights into previously reported cell fusion processes, our data might contribute to a better understanding of stem cell-mediated regenerative mechanisms and thus, the development of more efficient stem cell-based heart therapies.


Assuntos
Fusão Celular , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Viruses ; 2(9): 2134-2153, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21994722

RESUMO

Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.

5.
Exp Cell Res ; 314(14): 2634-42, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18571647

RESUMO

The expression of 4 pluripotency genes (Oct4, Sox2, c-Myc and Klf4) in mouse embryonic fibroblasts can reprogramme them to a pluripotent state. We have investigated the expression of these pluripotency genes when human somatic 293T cells are permeabilized and incubated in extracts of mouse embryonic stem (ES) cells. Expression of all 4 genes was induced over 1-8 h. Gene expression was associated with loss of repressive histone H3 modifications and increased recruitment of RNA polymerase II at the promoters. Lamin A/C, which is typically found only in differentiated cells, was also removed from the nuclei. When 293T cells were returned to culture after exposure to ES cell extract, the expression of the pluripotency genes continued to rise over the following 48 h of culture, suggesting that long-term reprogramming of gene expression had been induced. This provides a methodology for studying the de-differentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells to a pluripotent state without genetically altering them.


Assuntos
Extratos Celulares/farmacologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Lamina Tipo A/isolamento & purificação , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Xenopus
6.
J Virol Methods ; 142(1-2): 118-26, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17336399

RESUMO

Retroviral recombination has been suggested as a useful way to modify retroviral vectors. The possibility to combine two multiply deleted retroviral vectors into a novel vector was evaluated. To investigate this possibility we have constructed two defective vectors containing a shared internal ribosome entry site (IRES). The IRES was selected for its complex secondary structure, a feature described to favour retroviral recombination. The IRES was expected to promote a recombination event leading to the formation of a unique, functional retroviral vector. By supporting expression of two transgenes from a single promoter, this sequence was also expected to allow straightforward detection of the recombination event. The present data confirms the achievement of recombination-dependent rescue, albeit at low efficiency. Unexpectedly, a preferential use of the packaging signal (Psi) for recombination was observed, as compared to the IRES. Together these observations mitigate the idea of using this technique for the design of retroviral vectors.


Assuntos
Vetores Genéticos , Recombinação Genética , Retroviridae/genética , Linhagem Celular , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Transcrição Reversa , Ribossomos/metabolismo , Transdução Genética , Transfecção , Transgenes/genética , Transgenes/efeitos da radiação , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
7.
J Virol ; 80(19): 9889-95, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16973593

RESUMO

Conciliating biosafety with efficient gene transfer remains a constant concern in the development of retroviral vectors. Semliki Forest virus (SFV) replicons allow important retroviral vector production with interesting features. It is noteworthy that retroviruses have the ability to package Psi+ and, to some extent, Psi- cellular RNAs. Therefore, it was important to study the retroviral transfer of highly abundant SFV genomes expressing retroviral proteins. Here, we show that full-length SFV-vector replicons, with or without Psi, are efficiently packaged into retrovirus particles. Mechanistically, our data suggest that SFV packaging is the sum of its retroviral nucleocapsid-dependent recruitment together with a passive hijacking of membrane-anchored SFV replicon. A direct consequence of this phenomenon is the formation of particles harboring autonomous replicative abilities and contaminating vector preparations. Importantly, we confirm that retroviral SFV mobilization is not an exclusive feature of murine gamma retroviruses, since it is also observed using lentivectors.


Assuntos
Replicon/genética , Retroviridae/fisiologia , Vírus da Floresta de Semliki/genética , Vírion/metabolismo , Vetores Genéticos/genética , Vírion/química , Vírion/isolamento & purificação
8.
J Gene Med ; 6(9): 1014-22, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15352074

RESUMO

BACKGROUND: Semliki Forest virus (SFV) vectors have a great potential for the induction of protective immunity in a large number of clinical conditions including cancer. Such a potential accounts for the huge efforts made to improve the in vivo expression from SFV vectors. It is noteworthy that efficient in vivo expression strongly relies on the ability to deliver high-titre vectors. To achieve this, the generation of recombinant SFV particles, using independent expression systems for structural SFV genes, has been proposed. However, despite several modifications in the production process, a risk of contamination with replication-competent, or partially recombined, virus has remained. METHODS: Here, we exploit the ability of the vesicular stomatitis virus glycoprotein (VSV-G), expressed in trans, to hijack full-length genomic SFV RNA into secreted virus-like particles (VLPs). To allow SFV vector mobilisation, we designed a CMV driven SFV vector in which the internal 26S promoter has been extensively mutated. With this vector, mobilisation events were monitored using the Green Fluorescent Protein (GFP). The production procedure involves a sequential transfection protocol, of plasmids expressing the VSV-G and the SFV vector respectively. RESULTS: We show that the VLPs are effective for cellular delivery of SFV vectors in a broad range of human and non-human cellular targets. Furthermore, production of VLPs is easy and allows, through concentration, the harvest of high-titre vector. CONCLUSIONS: The present paper describes a convenient process aimed at mobilising full length SFV vectors. A major issue to consider, while developing clinically relevant gene transfer vectors, is the risk of undesirable generation of replication competent by-products. Importantly, as the VSV-G gene shares no homology with the SFV genome, our VLPs offer a strong guarantee of biosafety.


Assuntos
Vetores Genéticos/genética , Glicoproteínas de Membrana/genética , Vírus da Floresta de Semliki/genética , Proteínas do Envelope Viral/genética , Animais , Fusão Gênica Artificial , Linhagem Celular , Galinhas , Cricetinae , Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Genes Reporter , Terapia Genética , Vetores Genéticos/uso terapêutico , Proteínas de Fluorescência Verde/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , RNA Viral/metabolismo , Recombinação Genética , Vírus da Floresta de Semliki/fisiologia , Vírus da Floresta de Semliki/ultraestrutura , Transfecção , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Replicação Viral
9.
J Gene Med ; 6 Suppl 1: S67-82, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14978752

RESUMO

Retroviral vectors have actively contributed to the advent of gene therapy as a realistic approach in human therapeutics. At the beginning, the use of retroviral vectors was thought to be as simple as the collection of a viral supernatant that was applied to the desired cell. Rapidly, target resistance to transduction appeared in various conditions, ex vivo as well as in vivo. At that time, retrovectorologists entered an active "back to the bench" era. This phase was thought to have reached its conclusion with the generation of theoretically safe lentiviral vectors and when, in 2000, a first clinical trial using retroviral vectors proved to be successful. Unfortunately, recent developments have shown that we still need to improve our knowledge of several steps in the retroviral life cycle before we can accurately adapt vectors to target specific cells. In this review we will first briefly detail key features of the life cycle of wild-type retroviruses. Thereafter, an overview of the minimal requirements needed to generate retroviral vectors will be followed by the relevant developments in this rapidly moving field. Of note, we have highlighted the crucial biosafety issues in a specific section.


Assuntos
Terapia Genética , Vetores Genéticos , Retroviridae , Animais , Vetores Genéticos/química , Vetores Genéticos/fisiologia , Humanos , Mutagênese Insercional , Retroviridae/química , Retroviridae/fisiologia , Segurança/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA