Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Brain Topogr ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430283

RESUMO

Microstate analysis of resting-state EEG is a unique data-driven method for identifying patterns of scalp potential topographies, or microstates, that reflect stable but transient periods of synchronized neural activity evolving dynamically over time. During infancy - a critical period of rapid brain development and plasticity - microstate analysis offers a unique opportunity for characterizing the spatial and temporal dynamics of brain activity. However, whether measurements derived from this approach (e.g., temporal properties, transition probabilities, neural sources) show strong psychometric properties (i.e., reliability) during infancy is unknown and key information for advancing our understanding of how microstates are shaped by early life experiences and whether they relate to individual differences in infant abilities. A lack of methodological resources for performing microstate analysis of infant EEG has further hindered adoption of this cutting-edge approach by infant researchers. As a result, in the current study, we systematically addressed these knowledge gaps and report that most microstate-based measurements of brain organization and functioning except for transition probabilities were stable with four minutes of video-watching resting-state data and highly internally consistent with just one minute. In addition to these results, we provide a step-by-step tutorial, accompanying website, and open-access data for performing microstate analysis using a free, user-friendly software called Cartool. Taken together, the current study supports the reliability and feasibility of using EEG microstate analysis to study infant brain development and increases the accessibility of this approach for the field of developmental neuroscience.

2.
Brain Topogr ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141125

RESUMO

The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.

3.
Neuroimage ; 277: 120196, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286153

RESUMO

Microstates represent electroencephalographic (EEG) activity as a sequence of switching, transient, metastable states. Growing evidence suggests the useful information on brain states is to be found in the higher-order temporal structure of these sequences. Instead of focusing on transition probabilities, here we propose "Microsynt", a method designed to highlight higher-order interactions that form a preliminary step towards understanding the syntax of microstate sequences of any length and complexity. Microsynt extracts an optimal vocabulary of "words" based on the length and complexity of the full sequence of microstates. Words are then sorted into classes of entropy and their representativeness within each class is statistically compared with surrogate and theoretical vocabularies. We applied the method on EEG data previously collected from healthy subjects undergoing propofol anesthesia, and compared their "fully awake" (BASE) and "fully unconscious" (DEEP) conditions. Results show that microstate sequences, even at rest, are not random but tend to behave in a more predictable way, favoring simpler sub-sequences, or "words". Contrary to high-entropy words, lowest-entropy binary microstate loops are prominent and favored on average 10 times more than what is theoretically expected. Progressing from BASE to DEEP, the representation of low-entropy words increases while that of high-entropy words decreases. During the awake state, sequences of microstates tend to be attracted towards "A - B - C" microstate hubs, and most prominently A - B binary loops. Conversely, with full unconsciousness, sequences of microstates are attracted towards "C - D - E" hubs, and most prominently C - E binary loops, confirming the putative relation of microstates A and B to externally-oriented cognitive processes and microstate C and E to internally-generated mental activity. Microsynt can form a syntactic signature of microstate sequences that can be used to reliably differentiate two or more conditions.


Assuntos
Eletroencefalografia , Propofol , Humanos , Encéfalo , Mapeamento Encefálico , Vigília
4.
Res Sq ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205415

RESUMO

The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the - 64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same - 64 to 108 ms period (i.e., error-related microstate 3), and to greater parent-report-measured anxiety risk. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.

5.
Dev Cogn Neurosci ; 57: 101134, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35863172

RESUMO

The ultrafast spatiotemporal dynamics of large-scale neural networks can be examined using resting-state electroencephalography (EEG) microstates, representing transient periods of synchronized neural activity that evolve dynamically over time. In adults, four canonical microstates have been shown to explain most topographic variance in resting-state EEG. Their temporal structures are age-, sex- and state-dependent, and are susceptible to pathological brain states. However, no studies have assessed the spatial and temporal properties of EEG microstates exclusively during early childhood, a critical period of rapid brain development. Here we sought to investigate EEG microstates recorded with high-density EEG in a large sample of 103, 4-8-year-old children. Using data-driven k-means cluster analysis, we show that the four canonical microstates reported in adult populations already exist in early childhood. Using multiple linear regressions, we demonstrate that the temporal dynamics of two microstates are associated with age and sex. Source localization suggests that attention- and cognitive control-related networks govern the topographies of the age- and sex-dependent microstates. These novel findings provide unique insights into functional brain development in children captured with EEG microstates.

6.
Cereb Cortex ; 32(9): 1978-1992, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649280

RESUMO

There is growing evidence showing that the representation of the human "self" recruits special systems across different functions and modalities. Compared to self-face and self-body representations, few studies have investigated neural underpinnings specific to self-voice. Moreover, self-voice stimuli in those studies were consistently presented through air and lacking bone conduction, rendering the sound of self-voice stimuli different to the self-voice heard during natural speech. Here, we combined psychophysics, voice-morphing technology, and high-density EEG in order to identify the spatiotemporal patterns underlying self-other voice discrimination (SOVD) in a population of 26 healthy participants, both with air- and bone-conducted stimuli. We identified a self-voice-specific EEG topographic map occurring around 345 ms post-stimulus and activating a network involving insula, cingulate cortex, and medial temporal lobe structures. Occurrence of this map was modulated both with SOVD task performance and bone conduction. Specifically, the better participants performed at SOVD task, the less frequently they activated this network. In addition, the same network was recruited less frequently with bone conduction, which, accordingly, increased the SOVD task performance. This work could have an important clinical impact. Indeed, it reveals neural correlates of SOVD impairments, believed to account for auditory-verbal hallucinations, a common and highly distressing psychiatric symptom.


Assuntos
Voz , Percepção Auditiva , Eletroencefalografia , Alucinações/psicologia , Humanos , Lobo Temporal
7.
Clin Neurophysiol ; 133: 58-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801964

RESUMO

OBJECTIVE: To compare the spatial accuracy of 6 linear distributed inverse solutions for EEG source localisation of interictal epileptic discharges: Minimum Norm, Weighted Minimum Norm, Low-Resolution Electromagnetic Tomography (LORETA), Local Autoregressive Average (LAURA), Standardised LORETA, and Exact LORETA. METHODS: Spatial accuracy was assessed clinically by retrospectively comparing the maximum source of averaged interictal discharges to the resected brain area in 30 patients with successful epilepsy surgery, based on 204-channel EEG. Additionally, localisation errors of the inverse solutions were assessed in computer simulations, with different levels of noise added to the signal in both sensor space and source space. RESULTS: In the clinical evaluations, the source maximum was located inside the resected brain area in 50-57% of patients when using LORETA or LAURA, while all other inverse solutions performed significantly worse (17-30%; corrected p < 0.01). In the simulation studies, when noise levels exceeded 10%, LORETA and LAURA had substantially smaller localisation errors than the other inverse solutions. CONCLUSIONS: LORETA and LAURA provided the highest spatial accuracy both in clinical and simulated data, alongside with a comparably high robustness towards noise. SIGNIFICANCE: Among the different linear inverse solution algorithms tested, LORETA and LAURA might be preferred for interictal EEG source localisation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Algoritmos , Humanos
8.
Brain Connect ; 11(2): 146-155, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33403921

RESUMO

Sustained attention and working memory were improved in young adults after they engaged in a recently developed, closed-loop, digital meditation practice. Whether this type of meditation also has a sustained effect on dominant resting-state networks is currently unknown. In this study, we examined the resting brain states before and after a period of breath-focused, digital meditation training versus placebo using an electroencephalography (EEG) microstate approach. We found topographical changes in postmeditation rest, compared with baseline rest, selectively for participants who were actively involved in the meditation training and not in participants who engaged with an active, expectancy-match, placebo control paradigm. Our results suggest a reorganization of brain network connectivity after 6 weeks of intensive meditation training in brain areas, mainly including the right insula, the superior temporal gyrus, the superior parietal lobule, and the superior frontal gyrus bilaterally. These findings provide an opening for the development of a novel noninvasive treatment of neuropathological states by low-cost, breath-focused, digital meditation practice, which can be monitored by the EEG microstate approach.


Assuntos
Meditação , Encéfalo , Mapeamento Encefálico , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Descanso , Adulto Jovem
9.
Brain Topogr ; 34(3): 272-282, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33515171

RESUMO

It has been suggested that slow oscillations in the subthalamic nucleus (STN) reflect top-down inputs from the medial prefrontal cortex, thus implementing behavior control. It is unclear, however, whether the STN oscillations are related to cortical activity in a bottom-up manner. To assess resting-state subcortico-cortical interactions, we recorded simultaneous scalp electroencephalographic activity and local field potentials in the STN (LFP-STN) in 11 patients with Parkinson's disease implanted with deep brain stimulation electrodes in the on-medication state during rest. We assessed the cross-structural phase-amplitude coupling (PAC) between the STN and cortical activity within a wide frequency range of 1 to 100 Hz. The PAC was dominant between the δ/θ STN phase and ß/γ cortical amplitude in most investigated scalp regions and between the δ cortical phase and θ/α STN amplitude in the frontal and temporal regions. The cross-frequency linkage between the slow oscillations of the LFP-STN activity and the amplitude of the scalp-recorded cortical activity at rest was demonstrated, and similar involvement of the left and right STNs in the coupling was observed. Our results suggest that the STN plays a role in both bottom-up and top-down processes within the subcortico-cortical circuitries of the human brain during the resting state. A relative left-right symmetry in the STN-cortex functional linkage was suggested. Practical treatment studies would be necessary to assess whether unilateral stimulation of the STN might be sufficient for treatment of Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Eletroencefalografia , Humanos , Doença de Parkinson/terapia , Couro Cabeludo
10.
Clin Neurophysiol ; 131(12): 2795-2803, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137569

RESUMO

OBJECTIVE: To assess the value of caudal EEG electrodes over cheeks and neck for high-density electric source imaging (ESI) in presurgical epilepsy evaluation, and to identify the best time point during averaged interictal epileptic discharges (IEDs) for optimal ESI accuracy. METHODS: We retrospectively examined presurgical 257-channel EEG recordings of 45 patients with pharmacoresistant focal epilepsy. By stepwise removal of cheek and neck electrodes, averaged IEDs were downsampled to 219, 204, and 156 EEG channels. Additionally, ESI at the IED's half-rise was compared to other time points. The respective sources of maximum activity were compared to the resected brain area and postsurgical outcome. RESULTS: Caudal channels had disproportionately more artefacts. In 30 patients with favourable outcome, the 204-channel array yielded the most accurate results with ESI maxima < 10 mm from the resection in 67% and inside affected sublobes in 83%. Neither in temporal nor in extratemporal cases did the full 257-channel setup improve ESI accuracy. ESI was most accurate at 50% of the IED's rising phase. CONCLUSION: Information from cheeks and neck electrodes did not improve high-density ESI accuracy, probably due to higher artefact load and suboptimal biophysical modelling. SIGNIFICANCE: Very caudal EEG electrodes should be used for ESI with caution.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Cuidados Pré-Operatórios/métodos , Adolescente , Adulto , Criança , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos , Eletroencefalografia/instrumentação , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Pré-Operatórios/instrumentação , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
11.
Sci Rep ; 10(1): 17069, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051536

RESUMO

Why do people sometimes report that they remember dreams, while at other times they recall no experience? Despite the interest in dreams that may happen during the night, it has remained unclear which brain states determine whether these conscious experiences will occur and what prevents us from waking up during these episodes. Here we address this issue by comparing the EEG activity preceding awakenings with recalled vs. no recall of dreams using the EEG microstate approach. This approach characterizes transiently stable brain states of sub-second duration that involve neural networks with nearly synchronous dynamics. We found that two microstates (3 and 4) dominated during NREM sleep compared to resting wake. Further, within NREM sleep, microstate 3 was more expressed during periods followed by dream recall, whereas microstate 4 was less expressed. Source localization showed that microstate 3 encompassed the medial frontal lobe, whereas microstate 4 involved the occipital cortex, as well as thalamic and brainstem structures. Since NREM sleep is characterized by low-frequency synchronization, indicative of neuronal bistability, we interpret the increased presence of the "frontal" microstate 3 as a sign of deeper local deactivation, and the reduced presence of the "occipital" microstate 4 as a sign of local activation. The latter may account for the occurrence of dreaming with rich perceptual content, while the former may account for why the dreaming brain may undergo executive disconnection and remain asleep. This study demonstrates that NREM sleep consists of alternating brain states whose temporal dynamics determine whether conscious experience arises.


Assuntos
Sonhos/fisiologia , Eletroencefalografia/métodos , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Sonhos/psicologia , Feminino , Humanos , Masculino , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Polissonografia , Descanso/fisiologia , Sono de Ondas Lentas/fisiologia , Vigília/fisiologia , Adulto Jovem
12.
Neuromuscul Disord ; 30(8): 669-673, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709491

RESUMO

The spinal muscular atrophies (SMA) affect lower motor neurons leading to important muscle atrophy and paralysis. Some cases of SMA affect mostly the lower limbs and are called autosomal dominant spinal muscular atrophy, lower extremity predominant (SMALED). So far, two genes have been identified to cause this phenotype, DYNC1H1 (SMALED1) and BICD2 (SMALED2). This pathology is rare, but patients exhibit classical features which should be recognised by physicians. We present two unrelated cases of SMALED2 with previously described c.320C>T BICD2 mutations. Our cases exhibit non-progressive weakness and atrophy of the lower limbs associated with contractures and unique muscle MRI findings suggestive of classical SMALED2. We also performed an extensive review of the literature to present the classical and atypical phenotypes of BICD2. Indeed, some features appear to be highly suggestive of the disease, including upper limb sparing, sparing of the adductors muscles on physical examination and MRI, congenital contractures and normal nerve conductions studies.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Fenótipo , Atrofias Musculares Espinais da Infância/diagnóstico , Adulto , Feminino , Humanos , Extremidade Inferior/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Atrofias Musculares Espinais da Infância/genética
13.
Ann Neurol ; 87(4): 568-583, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31970803

RESUMO

OBJECTIVE: Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy. METHODS: Patients underwent full clinical characterization, lower limb magnetic resonance imaging (MRI), muscle biopsy, and genetic testing. A zebrafish loss-of-function model using morpholinos was created to assess the pathogenicity of the identified variant. Wild-type or mutated human TNNT1 mRNAs were coinjected with morpholinos to assess their abilities to rescue the morphant phenotype. RESULTS: Three adults and 1 child shared a novel missense homozygous variant in the TNNT1 gene (NM_003283.6: c.287T > C; p.Leu96Pro). They developed from childhood very slowly progressive limb-girdle weakness with rigid spine and disabling contractures. They suffered from restrictive lung disease requiring noninvasive mechanical ventilation in 3 patients, as well as recurrent episodes of rhabdomyolysis triggered by infections, which were relieved by dantrolene in 1 patient. Older patients remained ambulatory into their 60s. MRI of the leg muscles showed fibrofatty infiltration predominating in the posterior thigh and the deep posterior leg compartments. Muscle biopsies showed multiminicores and lobulated fibers, rods in half the patients, and no fiber type disproportion. Wild-type TNNT1 mRNA rescued the zebrafish morphants, but mutant transcripts failed to do so. INTERPRETATION: This study expands the phenotypic spectrum of TNNT1 myopathy and provides functional evidence for the pathogenicity of the newly identified missense mutation. ANN NEUROL 2020;87:568-583.


Assuntos
Músculo Esquelético/patologia , Miopatias da Nemalina/fisiopatologia , RNA Mensageiro/metabolismo , Troponina T/genética , Animais , Criança , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Morfolinos , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Rabdomiólise/genética , Rabdomiólise/fisiopatologia , Troponina T/metabolismo , Peixe-Zebra
14.
Front Neurol ; 10: 325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019487

RESUMO

The electroencephalogram (EEG) is one of the oldest technologies to measure neuronal activity of the human brain. It has its undisputed value in clinical diagnosis, particularly (but not exclusively) in the identification of epilepsy and sleep disorders and in the evaluation of dysfunctions in sensory transmission pathways. With the advancement of digital technologies, the analysis of EEG has moved from pure visual inspection of amplitude and frequency modulations over time to a comprehensive exploration of the temporal and spatial characteristics of the recorded signals. Today, EEG is accepted as a powerful tool to capture brain function with the unique advantage of measuring neuronal processes in the time frame in which these processes occur, namely in the sub-second range. However, it is generally stated that EEG suffers from a poor spatial resolution that makes it difficult to infer to the location of the brain areas generating the neuronal activity measured on the scalp. This statement has challenged a whole community of biomedical engineers to offer solutions to localize more precisely and more reliably the generators of the EEG activity. High-density EEG systems combined with precise information of the head anatomy and sophisticated source localization algorithms now exist that convert the EEG to a true neuroimaging modality. With these tools in hand and with the fact that EEG still remains versatile, inexpensive and portable, electrical neuroimaging has become a widely used technology to study the functions of the pathological and healthy human brain. However, several steps are needed to pass from the recording of the EEG to 3-dimensional images of neuronal activity. This review explains these different steps and illustrates them in a comprehensive analysis pipeline integrated in a stand-alone freely available academic software: Cartool. The information about how the different steps are performed in Cartool is only meant as a suggestion. Other EEG source imaging software may apply similar or different approaches to the different steps.

15.
Neuroimage ; 194: 82-92, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902640

RESUMO

The temporal structure of self-generated cognition is a key attribute to the formation of a meaningful stream of consciousness. When at rest, our mind wanders from thought to thought in distinct mental states. Despite the marked importance of ongoing mental processes, it is challenging to capture and relate these states to specific cognitive contents. In this work, we employed ultra-high field functional magnetic resonance imaging (fMRI) and high-density electroencephalography (EEG) to study the ongoing thoughts of participants instructed to retrieve self-relevant past episodes for periods of 22sec. These task-initiated, participant-driven activity patterns were compared to a distinct condition where participants performed serial mental arithmetic operations, thereby shifting from self-related to self-unrelated thoughts. BOLD activity mapping revealed selective enhanced activity in temporal, parietal and occipital areas during the memory compared to the mental arithmetic condition, evincing their role in integrating the re-experienced past events into conscious representations during memory retrieval. Functional connectivity analysis showed that these regions were organized in two major subparts, previously associated to "scene-reconstruction" and "self-experience" subsystems. EEG microstate analysis allowed studying these participant-driven thoughts in the millisecond range by determining the temporal dynamics of brief periods of stable scalp potential fields. This analysis revealed selective modulation of occurrence and duration of specific microstates in the memory and in the mental arithmetic condition, respectively. EEG source analysis revealed similar spatial distributions of the sources of these microstates and the regions identified with fMRI. These findings imply a functional link between BOLD activity changes in regions related to a certain mental activity and the temporal dynamics of mentation, and support growing evidence that specific fMRI networks can be captured with EEG as repeatedly occurring brief periods of integrated coherent neuronal activity, lasting only fractions of seconds.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Pensamento/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
16.
Brain Connect ; 7(10): 671-682, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28938855

RESUMO

Using electroencephalography (EEG) to elucidate the spontaneous activation of brain resting-state networks (RSNs) is nontrivial as the signal of interest is of low amplitude and it is difficult to distinguish the underlying neural sources. Using the principles of electric field topographical analysis, it is possible to estimate the meta-stable states of the brain (i.e., the resting-state topographies, so-called microstates). We estimated seven resting-state topographies explaining the EEG data set with k-means clustering (N = 164, 256 electrodes). Using a method specifically designed to localize the sources of broadband EEG scalp topographies by matching sensor and source space temporal patterns, we demonstrated that we can estimate the EEG RSNs reliably by measuring the reproducibility of our findings. After subtracting their mean from the seven EEG RSNs, we identified seven state-specific networks. The mean map includes regions known to be densely anatomically and functionally connected (superior frontal, superior parietal, insula, and anterior cingulate cortices). While the mean map can be interpreted as a "router," crosslinking multiple functional networks, the seven state-specific RSNs partly resemble and extend previous functional magnetic resonance imaging-based networks estimated as the hemodynamic correlates of four canonical EEG microstates.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Vias Neurais/fisiologia , Descanso/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Criança , Análise por Conglomerados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Adulto Jovem
17.
Neurobiol Aging ; 37: 209.e17-209.e21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26493020

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by an extensive loss of motor neurons in the primary motor cortex, brainstem, and spinal cord. Genetic studies report a high heritability of ALS. Recently, whole-exome sequencing analysis of familial ALS (FALS) patients allowed the identification of missense variations within the MATR3 gene. MATR3 was previously associated to distal myopathy 2 and encodes for a nuclear matrix and DNA/RNA binding protein that has been shown to interact with TDP43 in an RNA-dependent manner. Here, we assessed the MATR3 mutation frequency in French-Canadian ALS and control individuals (nFALS = 83, sporadic ALS [nSALS] = 164, and ncontrols = 162) and showed that MATR3 mutations were found in 0%, 1.8%, and 0% of FALS, SALS, and controls, respectively. Interestingly, among the mutations identified in SALS, the splicing mutation c.48+1G>T was found to result in the insertion of 24 amino acids in MATR3 protein. These findings further support the role of MATR3 in ALS, and more studies are needed to shed more light on MATR3 proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Mutação , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Ligação a RNA/genética , Sequência de Bases , Canadá , Proteínas de Ligação a DNA/genética , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Proteínas Associadas à Matriz Nuclear/fisiologia , RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , População Branca
18.
Brain Struct Funct ; 220(4): 2121-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24791748

RESUMO

High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm(2) unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion.


Assuntos
Mapeamento Encefálico , Potenciais Somatossensoriais Evocados/fisiologia , Nervos Periféricos/fisiologia , Córtex Somatossensorial/fisiologia , Vias Aferentes/fisiologia , Animais , Biofísica , Estimulação Elétrica , Eletroencefalografia , Feminino , Lateralidade Funcional , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Análise de Componente Principal , Tempo de Reação/fisiologia , Estatísticas não Paramétricas
19.
Neuroimage Clin ; 5: 77-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003030

RESUMO

Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence of the selected head model on the localization precision of IED in a large number of patients with known focus localization has not yet been performed. We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints (LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from the individual MRI of the patient and ESI was performed on averaged IED. We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Epilepsia/fisiopatologia , Modelos Neurológicos , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Eletroencefalografia , Feminino , Cabeça , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Brain Topogr ; 27(2): 258-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24026809

RESUMO

Several studies showed that in the human brain specific premotor and parietal areas are activated during the execution and observation of motor acts. The activation of this premotor-parietal network displaying the so-called Mirror Mechanism (MM) was proposed to underpin basic forms of action understanding. However, the functional properties of the MM in children are still largely unknown. In order to address this issue, we recorded high-density EEG from 12 children (6 female, 6 male; average age 10.5, SD ±2.15). Data were collected when children observed video clips showing hands grasping objects in two different experimental conditions: (1) Full Vision, in which the motor act was fully visible; (2) Hidden, in which the interaction between the hand and the object was not visible. Event-related potentials (ERPs) and topographic map analyses were used to investigate the temporal pattern of the ERPs and their brain source of localization, employing a children template of the Montreal Neurological Institute. Results showed that two different parieto-premotor circuits are activated by the observation of object-related hand reaching-to-grasping motor acts in children. The first circuit comprises the ventral premotor and the inferior parietal cortices. The second one comprises the dorsal premotor and superior parietal cortices. The activation of both circuits is differently lateralized and modulated in time, and influenced by the amount of visual information available about the hand grasping-related portion of the observed motor acts.


Assuntos
Potenciais Evocados Visuais , Lobo Frontal/fisiologia , Atividade Motora , Lobo Parietal/fisiologia , Criança , Eletroencefalografia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA