Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(6): 3170-3186, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220082

RESUMO

Weakly acid polymers with pH-responsive solubility are being used with increasing frequency in amorphous solid dispersion (ASD) formulations of drugs with low aqueous solubility. However, drug release and crystallization in a pH environment where the polymer is insoluble are not well understood. The aim of the current study was to develop ASD formulations optimized for release and supersaturation longevity of a rapidly crystallizing drug, pretomanid (PTM), and to evaluate a subset of these formulations in vivo. Following screening of several polymers for their ability to inhibit crystallization, hypromellose acetate succinate HF grade (HPMCAS-HF; HF) was selected to prepare PTM ASDs. In vitro release studies were conducted in simulated fasted- and fed-state media. Drug crystallization in ASDs following exposure to dissolution media was evaluated by powder X-ray diffraction, scanning electron microscopy, and polarized light microscopy. In vivo oral pharmacokinetic evaluation was conducted in male cynomolgus monkeys (n = 4) given 30 mg PTM under both fasted and fed conditions in a crossover design. Three HPMCAS-based ASDs of PTM were selected for fasted-state animal studies based on their in vitro release performance. Enhanced bioavailability was observed for each of these formulations relative to the reference product that contained crystalline drug. The 20% drug loading PTM-HF ASD gave the best performance in the fasted state, with subsequent dosing in the fed state. Interestingly, while food improved drug absorption of the crystalline reference product, the exposure of the ASD formulation was negatively impacted. The failure of the HPMCAS-HF ASD to enhance absorption in the fed state was hypothesized to result from poor release in the reduced pH intestinal environment resulting from the fed state. In vitro experiments confirmed a reduced release rate under lower pH conditions, which was attributed to reduced polymer solubility and an enhanced crystallization tendency of the drug. These findings emphasize the limitations of in vitro assessment of ASD performance using standardized media conditions. Future studies are needed for improved understanding of food effects on ASD release and how this variability can be captured by in vitro testing methodologies for better prediction of in vivo outcomes, in particular for ASDs formulated with enteric polymers.


Assuntos
Polímeros , Animais , Masculino , Polímeros/química , Solubilidade , Cristalização , Liberação Controlada de Fármacos
2.
Toxicol Rep ; 9: 927-936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864921

RESUMO

Pretomanid is a nitroimidazooxazine antimycobacterial drug that was approved in more than 10 countries as part of a three-drug, all oral regimen, consisting of bedaquiline, pretomanid, and linezolid (BPaL) for 6-months treatment of adults with pulmonary extensively drug-resistant tuberculosis (XDR-TB) or with complicated forms of multidrug-resistant tuberculosis (MDR-TB). The toxicological profile of pretomanid was thoroughly evaluated in repeat-dose oral toxicity studies up to 39 weeks long in cynomolgus monkeys. Exposures up to 10-fold higher than in humans at the approved pretomanid dose (200 mg) were achieved in acute studies allowing for characterization of dose-limiting toxicity. Target organs and processes identified in acute and chronic toxicity studies included QT prolongation, nervous system effects, and liver effects (minimal hepatocellular hypertrophy without elevations in liver enzymes). In a 13-week study, no cataracts were present at the end of dosing, but 2 of 12 monkeys had cataracts at the end of a 13-week recovery period. No cataracts related to pretomanid administration were observed in subsequent 13-week or 39-week studies. No male reproductive toxicity was observed in these studies. No-observed-adverse-effect levels (NOAELs) were identified in all studies. Exposures at the NOAELs equaled, or exceeded, human exposure at the approved pretomanid dose with the exception of female monkeys in a 39-week chronic toxicity study. These data support the use of pretomanid as part of the 6-month BPaL regimen for treating XDR-TB and MDR-TB.

3.
Int J Toxicol ; 41(5): 367-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35849539

RESUMO

Pretomanid is a nitroimidazooxazine antimycobacterial drug that was approved as part of a three-drug oral regimen, consisting of bedaquiline, pretomanid, and linezolid, for 6-months treatment of adults with pulmonary extensively drug-resistant tuberculosis or with complicated forms of multidrug-resistant tuberculosis by the food and drug administration in the United States and regulatory bodies in over 10 other countries. Nitroaromatic compounds as a class carry a risk of genotoxicity and potential carcinogenicity based on reactive metabolite formation. A battery of good laboratory practice genotoxicity studies on pretomanid indicated that the compound was not genotoxic, however its hydroxy imidazole metabolite (M50) was genotoxic in the Ames assay. To assess the in vivo carcinogenic potential of pretomanid, hemizygous Tg.rasH2 mice were administered pretomanid once daily by oral gavage for 26 weeks. Male mice were given pretomanid in vehicle at doses of 0, 5, 15 and 40 mg/kg/day and female mice were given pretomanid in vehicle at doses of 0, 10, 30 and 80 mg/kg/day. Positive control mice of both sexes received intraperitoneal injections of urethane at 1000 mg/kg on Days 1, 3 and 5. There were no pretomanid-related early deaths, tumors, non-neoplastic microscopic findings, or gross necropsy findings at any dose level. The positive control gave the anticipated response of lung tumors. Oral administration of pretomanid to mice produced plasma exposure to the parent compound (high dose AUC of pretomanid 3 times the clinical AUC at the maximum recommended human dose) and exposure to the M50 metabolite (less than 10% of pretomanid) at all dose levels in both sexes. These data show that pretomanid was not carcinogenic in a transgenic mouse model at systemic exposures greater than human therapeutic exposures.


Assuntos
Antibacterianos , Carcinógenos , Adulto , Animais , Carcinogênese , Carcinógenos/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA