Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 33(21): 3222-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23065712

RESUMO

An ultrafast microfluidic PCR module (30 PCR cycles in 6 min) based on the oscillating fluid plug concept was developed. A robust amplification of native genomic DNA from whole blood samples could be achieved at operational conditions established from systematic investigations of key parameters including heat transfer and in particular flow velocities. Experimental data were augmented with results from computational fluid dynamics simulations. The reproducibility of the current system was substantially improved compared to previous concepts by integration of a closed reservoir instead of utilizing a vented channel end at ambient pressure rendering the devised module suitable for integration into complex sample-to-answer analysis platforms such as point-of-care applications.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Actinas/genética , Simulação por Computador , DNA/sangue , DNA/química , Desenho de Equipamento , Humanos , Masculino , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Temperatura
2.
Anal Bioanal Chem ; 399(3): 1117-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21116614

RESUMO

Stopped-flow technology is frequently used to monitor rapid (bio)chemical reactions with high temporal resolution, e.g., in dynamic investigations of enzyme reactions, protein interactions, or molecular transport mechanisms. However, conventional stopped-flow devices are often overly complex, voluminous, or costly. Moreover, excessive amounts of sample are often wasted owing to inefficient designs. To address these shortcomings, we propose a stopped-flow system based on microfluidic design principles. Our simple and cost-efficient approach offers distinct advantages over existing technology. In particular, the use of injection-molded disposable microfluidic chips minimizes required sample volumes and associated costs, simplifies handling, and prevents adverse cross-contamination effects. The cost of the system developed is reduced by an order of magnitude compared with the cost of commercial systems. The system contains a high-precision valve system for fluid control and features automated data acquisition capability with high temporal resolution. Analyses with two well-established reaction kinetics yielded a dead time of approximately 8-9 ms.


Assuntos
Análise Custo-Benefício , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Polimetil Metacrilato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA