Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Mol Biol ; 113(6): 401-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37129736

RESUMO

Plant cell walls are complex structures mainly made up of carbohydrate and phenolic polymers. In addition to their structural roles, cell walls function as external barriers against pathogens and are also reservoirs of glycan structures that can be perceived by plant receptors, activating Pattern-Triggered Immunity (PTI). Since these PTI-active glycans are usually released upon plant cell wall degradation, they are classified as Damage Associated Molecular Patterns (DAMPs). Identification of DAMPs imply their extraction from plant cell walls by using multistep methodologies and hazardous chemicals. Subcritical water extraction (SWE) has been shown to be an environmentally sustainable alternative and a simplified methodology for the generation of glycan-enriched fractions from different cell wall sources, since it only involves the use of water. Starting from Equisetum arvense cell walls, we have explored two different SWE sequential extractions (isothermal at 160 ºC and using a ramp of temperature from 100 to 160 ºC) to obtain glycans-enriched fractions, and we have compared them with those generated with a standard chemical-based wall extraction. We obtained SWE fractions enriched in pectins that triggered PTI hallmarks in Arabidopsis thaliana such as calcium influxes, reactive oxygen species production, phosphorylation of mitogen activated protein kinases and overexpression of immune-related genes. Notably, application of selected SWE fractions to pepper plants enhanced their disease resistance against the fungal pathogen Sclerotinia sclerotiorum. These data support the potential of SWE technology in extracting PTI-active fractions from plant cell wall biomass containing DAMPs and the use of SWE fractions in sustainable crop production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Equisetum , Resistência à Doença , Proteínas de Arabidopsis/genética , Equisetum/metabolismo , Imunidade Vegetal , Biomassa , Arabidopsis/genética , Plantas/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Doenças das Plantas/microbiologia
2.
Plant J ; 106(3): 601-615, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544927

RESUMO

Pattern-triggered immunity (PTI) is activated in plants upon recognition by pattern recognition receptors (PRRs) of damage- and microbe-associated molecular patterns (DAMPs and MAMPs) derived from plants or microorganisms, respectively. To understand better the plant mechanisms involved in the perception of carbohydrate-based structures recognized as DAMPs/MAMPs, we have studied the ability of mixed-linked ß-1,3/1,4-glucans (MLGs), present in some plant and microbial cell walls, to trigger immune responses and disease resistance in plants. A range of MLG structures were tested for their capacity to induce PTI hallmarks, such as cytoplasmic Ca2+ elevations, reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. These analyses revealed that MLG oligosaccharides are perceived by Arabidopsis thaliana and identified a trisaccharide, ß-d-cellobiosyl-(1,3)-ß-d-glucose (MLG43), as the smallest MLG structure triggering strong PTI responses. These MLG43-mediated PTI responses are partially dependent on LysM PRRs CERK1, LYK4 and LYK5, as they were weaker in cerk1 and lyk4 lyk5 mutants than in wild-type plants. Cross-elicitation experiments between MLG43 and the carbohydrate MAMP chitohexaose [ß-1,4-d-(GlcNAc)6 ], which is also perceived by these LysM PRRs, indicated that the mechanism of MLG43 recognition could differ from that of chitohexaose, which is fully impaired in cerk1 and lyk4 lyk5 plants. MLG43 treatment confers enhanced disease resistance in A. thaliana to the oomycete Hyaloperonospora arabidopsidis and in tomato and pepper to different bacterial and fungal pathogens. Our data support the classification of MLGs as a group of carbohydrate-based molecular patterns that are perceived by plants and trigger immune responses and disease resistance.


Assuntos
Parede Celular/metabolismo , Resistência à Doença , Imunidade Vegetal , beta-Glucanas/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Cálcio/metabolismo , Capsicum/imunologia , Capsicum/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Oomicetos/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Trissacarídeos
3.
Front Plant Sci ; 11: 1210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849751

RESUMO

Immune responses in plants can be triggered by damage/microbe-associated molecular patterns (DAMPs/MAMPs) upon recognition by plant pattern recognition receptors (PRRs). DAMPs are signaling molecules synthesized by plants or released from host cellular structures (e.g., plant cell walls) upon pathogen infection or wounding. Despite the hypothesized important role of plant cell wall-derived DAMPs in plant-pathogen interactions, a very limited number of these DAMPs are well characterized. Recent work demonstrated that pectin-enriched cell wall fractions extracted from the cell wall mutant impaired in Arabidopsis Response Regulator 6 (arr6), that showed altered disease resistance to several pathogens, triggered more intense immune responses than those activated by similar cell wall fractions from wild-type plants. It was hypothesized that arr6 cell wall fractions could be differentially enriched in DAMPs. In this work, we describe the characterization of the previous immune-active fractions of arr6 showing the highest triggering capacities upon further fractionation by chromatographic means. These analyses pointed to a role of pentose-based oligosaccharides triggering plant immune responses. The characterization of several pentose-based oligosaccharide structures revealed that ß-1,4-xylooligosaccharides of specific degrees of polymerization and carrying arabinose decorations are sensed as DAMPs by plants. Moreover, the pentasaccharide 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) was found as a highly active DAMP structure triggering strong immune responses in Arabidopsis thaliana and enhancing crop disease resistance.

4.
Plant Physiol ; 180(1): 571-581, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782963

RESUMO

To be successful plant pathogens, microbes use "effector proteins" to manipulate host functions to their benefit. Identifying host targets of effector proteins and characterizing their role in the infection process allow us to better understand plant-pathogen interactions and the plant immune system. Yeast two-hybrid analysis and coimmunoprecipitation were used to demonstrate that the Phytophthora infestans effector AVIRULENCE 2 (PiAVR2) interacts with all three BRI1-SUPPRESSOR1-like (BSL) family members from potato (Solanum tuberosum). Transient expression of BSL1, BSL2, and BSL3 enhanced P. infestans leaf infection. BSL1 and BSL3 suppressed INFESTIN 1 elicitin-triggered cell death, showing that they negatively regulate immunity. Virus-induced gene silencing studies revealed that BSL2 and BSL3 are required for BSL1 stability and show that basal levels of immunity are increased in BSL-silenced plants. Immune suppression by BSL family members is dependent on the brassinosteroid-responsive host transcription factor CIB1/HBI1-like 1. The P. infestans effector PiAVR2 targets all three BSL family members in the crop plant S. tuberosum These phosphatases, known for their role in growth-promoting brassinosteroid signaling, all support P. infestans virulence and thus can be regarded as susceptibility factors in late blight infection.


Assuntos
Phytophthora infestans/patogenicidade , Imunidade Vegetal , Proteínas de Plantas/imunologia , Fatores de Virulência/metabolismo , Inativação Gênica , Interações Hospedeiro-Patógeno , Phytophthora infestans/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Fatores de Virulência/genética
5.
New Phytol ; 219(4): 1433-1446, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932222

RESUMO

Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.


Assuntos
Calmodulina/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Phytophthora infestans/metabolismo , Imunidade Vegetal , Proteínas/química , Proteínas/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Cálcio/farmacologia , Membrana Celular/metabolismo , Solanum lycopersicum/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Phytophthora infestans/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
6.
Mol Plant Microbe Interact ; 29(8): 651-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27529660

RESUMO

Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms.


Assuntos
Arabidopsis/imunologia , Flagelina/antagonistas & inibidores , Doenças das Plantas/imunologia , Transdução de Sinais , Sistemas de Secreção Tipo III/metabolismo , Xanthomonas/genética , Arabidopsis/microbiologia , Genes Reporter , Glucanos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , Protoplastos , Pseudomonas syringae/patogenicidade , Sistemas de Secreção Tipo III/genética , Xanthomonas/imunologia , Xanthomonas/patogenicidade
7.
Phys Rev Lett ; 115(13): 131601, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451541

RESUMO

We estimate the consequences of finite masses of pseudoscalar mesons on the decay rates of scalar glueballs in the Witten-Sakai-Sugimoto model, a top-down holographic model of low-energy QCD, by extrapolating from the calculable vertex of glueball fields and the η^{'} meson that follows from the Witten-Veneziano mechanism for giving mass to the latter. Evaluating the effect on the recently calculated decay rates of glueballs in the Witten-Sakai-Sugimoto model, we find a strong enhancement of the decay of scalar glueballs into kaons and η mesons, in fairly close agreement with experimental data on the glueball candidate f_{0}(1710).

8.
New Phytol ; 204(4): 803-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25539003

RESUMO

Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.


Assuntos
Fungos/fisiologia , Interações Hospedeiro-Patógeno , Células Vegetais/microbiologia , Plantas/microbiologia , Simbiose , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal
9.
Front Microbiol ; 5: 548, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368608

RESUMO

Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

10.
Front Microbiol ; 5: 320, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101059

RESUMO

Within the past decade, remarkable similarities between the molecular organization of animal and plant systems for non-self discrimination were revealed. Obvious parallels exist between the molecular structures of the receptors mediating the recognition of pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) with plant pattern recognition receptors strikingly resembling mammalian Toll-like receptors. Mitogen-activated protein kinase cascades, leading to the transcriptional activation of immunity-associated genes, illustrate the conservation of whole molecular building blocks of PAMP/MAMP-induced signaling. Enteropathogenic Salmonella and Escherichia coli use a type three secretion system (T3SS) to inject effector proteins into the mammalian host cell to subvert defense mechanisms and promote gut infection. Lately, disease occurrence was increasingly associated with bacteria-contaminated fruits and vegetables and common themes have emerged with regard to whether and how effectors target innate immune responses in a trans-kingdom manner. We propose that numerous Salmonella or E. coli effectors may be active in planta and tend to target central components (hubs) of immune signaling pathways.

11.
Elife ; 32014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24957336

RESUMO

Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Bactérias/metabolismo , Parede Celular/metabolismo , Imunidade Vegetal , Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Hidrólise , Ligantes , Dados de Sequência Molecular , Muramidase/química , Peptídeos/química , Peptidoglicano/química , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Homologia de Sequência do Ácido Nucleico , Nicotiana/genética , Nicotiana/microbiologia
12.
PLoS Pathog ; 10(4): e1004057, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763622

RESUMO

Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Peptídeos/imunologia , Phytophthora infestans/imunologia , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Peptídeos/genética , Phytophthora infestans/genética
13.
Methods Mol Biol ; 1127: 213-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643564

RESUMO

Transient expression in plant mesophyll protoplasts allows rapid characterisation of gene functions in vivo in a simplified and synchronized manner without bias due to the use of bacteria-based gene or protein delivery systems. It offers the possibility to test whether microbial effectors can subvert early events of plant immune signaling that are activated upon recognition of Microbe-Associated Molecular Patterns (MAMPs), the so-called MAMP-triggered immunity (MTI). Here, we describe the isolation and transfection with effector genes of Arabidopsis thaliana and Solanum lycopersicum mesophyll protoplasts, the use of a non-invasive luciferase reporter assay and a simple method to detect activated Mitogen-Activated Protein Kinases (MAPKs) to identify and study, in a medium-throughput manner, new effectors suppressing early signal transduction events of MTI.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Bioensaio/métodos , Células do Mesofilo/citologia , Imunidade Vegetal , Protoplastos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Solanum lycopersicum/imunologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Morte Celular , Ativação Enzimática , Ensaios Enzimáticos , Genes Reporter , Glucuronidase/metabolismo , Immunoblotting , Luciferases/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Polietilenoglicóis/química , Protoplastos/citologia , Transfecção
14.
Plant Cell ; 25(10): 4227-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24104566

RESUMO

Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called sclerotinia culture filtrate elicitor1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to receptor-like protein30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases brassinosteroid insensitive1-associated receptor kinase1 (BAK1) and Suppressor of BIR1-1/evershed (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Ascomicetos/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Proteínas Serina-Treonina Quinases/genética
15.
Plant Cell ; 25(6): 2236-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23800962

RESUMO

In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana associated molecule with the SH3 domain of STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with endosomal complex required for transport-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit vacuolar protein sorting2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Autofagia/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Escuridão , Resistência à Doença/genética , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fungos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia Confocal , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
17.
J Biol Chem ; 286(49): 42585-42593, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21994936

RESUMO

Transglutaminases (TGases) are ubiquitous enzymes that catalyze selective cross-linking between protein-bound glutamine and lysine residues; the resulting isopeptide bond confers high resistance to proteolysis. Phytophthora sojae, a pathogen of soybean, secretes a Ca(2+)-dependent TGase (GP42) that is activating defense responses in both host and non-host plants. A GP42 fragment of 13 amino acids, termed Pep-13, was shown to be absolutely indispensable for both TGase and elicitor activity. GP42 does not share significant primary sequence similarity with known TGases from mammals or bacteria. This suggests that GP42 has evolved novel structural and catalytic features to support enzymatic activity. We have solved the crystal structure of the catalytically inactive point mutant GP42 (C290S) at 2.95 Å resolution and identified residues involved in catalysis by mutational analysis. The protein comprises three domains that assemble into an elongated structure. Although GP42 has no structural homolog, its core region displays significant similarity to the catalytic core of the Mac-1 cysteine protease from Group A Streptococcus, a member of the papain-like superfamily of cysteine proteases. Proteins that are taxonomically related to GP42 are only present in plant pathogenic oomycetes belonging to the order of the Peronosporales (e.g. Phytophthora, Hyaloperonospora, and Pythium spp.) and in marine Vibrio bacteria. This suggests that a lateral gene transfer event may have occurred between bacteria and oomycetes. Our results offer a basis to design and use highly specific inhibitors of the GP42-like TGase family that may impair the growth of important oomycete and bacterial pathogens.


Assuntos
Oomicetos/metabolismo , Phytophthora/genética , Vibrio/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X/métodos , Análise Mutacional de DNA , Evolução Molecular , Imunidade Inata , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Petroselinum/microbiologia , Filogenia , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Solanum tuberosum/microbiologia , Transglutaminases/metabolismo , Microbiologia da Água
18.
Curr Opin Biotechnol ; 21(2): 204-10, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181472

RESUMO

Saving the world's food supply constitutes one of the major challenges of the future. As a complement to classical and molecular breeding technologies, novel strategies for biotechnological improvement of plant immunity aim at enhancing host recognition capacities for potential pathogens, at boosting the executive arsenal of plant immunity, and at interfering with virulence strategies employed by microbial pathogens. In addition, chemical and biological priming provides means for triggering plant defenses in a non-transgenic manner. Major advances in our understanding of the molecular basis of plant immunity and of microbial infection strategies have opened new ways for engineering durable disease resistance in crop plants that are highlighted in this review.


Assuntos
Biotecnologia/tendências , Melhoramento Genético/métodos , Imunidade Inata/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/genética
19.
Proc Natl Acad Sci U S A ; 106(25): 10359-64, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19520828

RESUMO

Many plant pathogens secrete toxins that enhance microbial virulence by killing host cells. Usually, these toxins are produced by particular microbial taxa, such as bacteria or fungi. In contrast, many bacterial, fungal and oomycete species produce necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) that trigger leaf necrosis and immunity-associated responses in various plants. We have determined the crystal structure of an NLP from the phytopathogenic oomycete Pythium aphanidermatum to 1.35A resolution. The protein fold exhibits structural similarities to cytolytic toxins produced by marine organisms (actinoporins). Computational modeling of the 3-dimensional structure of NLPs from another oomycete, Phytophthora parasitica, and from the phytopathogenic bacterium, Pectobacterium carotovorum, revealed a high extent of fold conservation. Expression of the 2 oomycete NLPs in an nlp-deficient P. carotovorum strain restored bacterial virulence, suggesting that NLPs of prokaryotic and eukaryotic origins are orthologous proteins. NLP mutant protein analyses revealed that identical structural properties were required to cause plasma membrane permeabilization and cytolysis in plant cells, as well as to restore bacterial virulence. In sum, NLPs are conserved virulence factors whose taxonomic distribution is exceptional for microbial phytotoxins, and that contribute to host infection by plasma membrane destruction and cytolysis. We further show that NLP-mediated phytotoxicity and plant defense gene expression share identical fold requirements, suggesting that toxin-mediated interference with host integrity triggers plant immunity-associated responses. Phytotoxin-induced cellular damage-associated activation of plant defenses is reminiscent of microbial toxin-induced inflammasome activation in vertebrates and may thus constitute another conserved element in animal and plant innate immunity.


Assuntos
Proteínas de Algas/química , Doenças das Plantas/microbiologia , Plantas/microbiologia , Pythium/patogenicidade , Toxinas Biológicas/química , Proteínas de Algas/genética , Simulação por Computador , Cristalografia por Raios X , Modelos Químicos , Pectobacterium/patogenicidade , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Plantas/imunologia , Conformação Proteica , Dobramento de Proteína , Toxinas Biológicas/genética , Virulência
20.
Mol Plant Microbe Interact ; 22(7): 790-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19522561

RESUMO

Analysis of the fully sequenced genome of the wheat leaf-specific fungal pathogen Mycosphaerella graminicola identified only a single gene encoding a member of the necrosis- and ethylene-inducing peptide 1 (Nep1)-like protein family (NLP). NLP proteins have frequently been shown to trigger cell death and the activation of defense signaling reactions in dicotyledonous plants. However, complete loss-of-function reverse genetics analyses for their importance in the virulence of eukaryotic plant pathogens are generally lacking. Real-time quantitative polymerase chain reaction on MgNLP demonstrated the gene to be specifically expressed in planta. Peak expression was observed during the immediate presymptomatic phase of colonization of a susceptible host genotype. This was followed by a dramatic decrease during disease lesion formation which, in this system, exhibits characteristics of host programmed cell death (PCD). No comparable peak in transcript levels was seen during an incompatible interaction with a host genotype exhibiting gene-for-gene-based disease resistance. Heterologously expressed MgNLP protein induced necrotic cell death and the activation of defense-related genes when infiltrated into Arabidopsis leaves but not in leaves of a susceptible wheat genotype. MgNLP infiltration also failed to stimulate wheat mitogen-activated protein kinase activities. Finally, targeted deletion of M. graminicola MgNLP caused no detectable reduction in plant pathogenicity or virulence, suggesting that this protein is not a major virulence determinant during fungal infection of its host plant. To our knowledge, this represents the first complete loss-of-function analysis of NLP in a eukaryotic plant pathogen and we discuss our findings in the context of possible functions for NLP in pathogens which only infect monocotyledonous plants.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/fisiologia , Triticum/microbiologia , Arabidopsis/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Estrutura Terciária de Proteína , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA