Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 8(10): 2148-2152, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28448150

RESUMO

Defects in monolayer transition-metal dichalcogenides (TMDCs) may lead to unintentional doping, charge-carrier trapping, and nonradiative recombination. These effects impair electronic and optoelectronic technologies. Here we show that charged defects in MoS2 monolayers can be effectively screened when they are in contact with an ionic liquid (IL), leading to an increase in photoluminescence (PL) yield by up to two orders of magnitude. The extent of this PL enhancement by the IL correlates with the brightness of each pretreated sample. We propose the existence of two classes of nonradiative recombination centers in monolayer MoS2: (i) charged defects that relate to unintentional doping and may be electrostatically screened by ILs and (ii) neutral defects that remain unaffected by the presence of ILs.

2.
Proc Natl Acad Sci U S A ; 102(5): 1280-4, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15647359

RESUMO

We calculate the optical attractive forces that occur between 30-nm Au or Ag nanocrystals when irradiated at visible wavelengths. These forces show resonances at dipolar plasmon wavelengths, similar to resonances in the near-field electromagnetic intensities. At MW/cm2 intensities, optical forces can be stronger than van der Waals forces and could be used to organize metallic particles. We also suggest that photonucleation of organic crystals from supersaturated liquid solutions may be caused by optical forces.

3.
Science ; 262(5137): 1242-4, 1993 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-17772645

RESUMO

The dynamics and spectroscopy of silicon nanocrystals that emit at visible wavelengths were analyzed. Size-selective precipitation and size-exclusion chromatography cleanly separate the silicon nanocrystals from larger crystallites and aggregates and provide direct evidence for quantum confinement in luminescence. Measured quantum yields are as high as 50 percent at low temperature, principally as a result of efficient oxide passivation. Despite a 0.9-electron-volt shift of the band gap to higher energy, the nanocrystals behave fundamentally as indirect gap materials with low oscillator strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA