Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
3D Print Addit Manuf ; 10(5): 855-868, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886401

RESUMO

Motivated by the need to develop more informative and data-rich patient-specific presurgical planning models, we present a high-resolution method that enables the tangible replication of multimodal medical data. By leveraging voxel-level control of multimaterial three-dimensional (3D) printing, our method allows for the digital integration of disparate medical data types, such as functional magnetic resonance imaging, tractography, and four-dimensional flow, overlaid upon traditional magnetic resonance imaging and computed tomography data. While permitting the explicit translation of multimodal medical data into physical objects, this approach also bypasses the need to process data into mesh-based boundary representations, alleviating the potential loss and remodeling of information. After evaluating the optical characteristics of test specimens generated with our correlative data-driven method, we culminate with multimodal real-world 3D-printed examples, thus highlighting current and potential applications for improved surgical planning, communication, and clinical decision-making through this approach.

3.
J Vis Exp ; (180)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225265

RESUMO

Most applications of 3-dimensional (3D) printing for presurgical planning have been limited to bony structures and simple morphological descriptions of complex organs due to the fundamental limitations in accuracy, quality, and efficiency of the current modeling paradigm. This has largely ignored the soft tissue critical to most surgical specialties where the interior of an object matters and anatomical boundaries transition gradually. Therefore, the needs of the biomedical industry to replicate human tissue, which displays multiple scales of organization and varying material distributions, necessitate new forms of representation. Presented here is a novel technique to create 3D models directly from medical images, which are superior in spatial and contrast resolution to current 3D modeling methods and contain previously unachievable spatial fidelity and soft tissue differentiation. Also presented are empirical measurements of novel, additively manufactured composites that span the gamut of material stiffnesses seen in soft biological tissues from MRI and CT. These unique volumetric design and printing methods allow for deterministic and continuous adjustment of material stiffness and color. This capability enables an entirely new application of additive manufacturing to presurgical planning: mechanical realism. As a natural complement to existing models that provide appearance matching, these new models also allow medical professionals to "feel" the spatially varying material properties of a tissue simulant-a critical addition to a field in which tactile sensation plays a key role.


Assuntos
Imageamento por Ressonância Magnética , Impressão Tridimensional , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA