Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Elife ; 122023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852906

RESUMO

The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.


Losing a spouse or life partner is a deeply traumatic event that can have long-term repercussions. Given enough time, however, most surviving partners are able to process their grief. The neural processes that enable people to adapt to their loss remain unknown. To explore this question, scientists often turn to animals that form long-term mating based pair bonds and can be raised in the laboratory. Monogamous prairie voles enter lifelong partnerships where the two individuals live together, prefer to cuddle with each other, and take care of their pups as a team. After having lost their mate, they show signs of distress that eventually subside with time. Sadino et al. examined the biological impact of partner loss in these animals by focusing on the nucleus accumbens, a brain region important for social connections. This involved tracking gene expression ­ which genes were switched on and off in this area ­ as the voles established their pair bonds, and then at different time points after one of the partners had been removed. The experiments revealed that establishing a relationship leads to a stable shift in nucleus accumbens gene expression, which may help maintain bonds over time. In particular, genes related to glia (the non-neuronal cells which assist neurons in their tasks) see their expression levels increase, indicating a previously undescribed role for this cell type in regulating pair bonding. Having their partner removed led to an erosion of the gene expression pattern that had emerged during pair bonding; this may help the remaining vole adapt to its loss and go on to form a new bond. In addition, Sadino et al. explored the gene expression of only neurons in the nucleus accumbens and uncovered biological processes distinct from those that occur in glia after partner separation. Together, these results shed light on the genetic and neuronal mechanisms which underlie adaptation to loss; this knowledge could one day inform how to better support individuals during this time.


Assuntos
Pradaria , Núcleo Accumbens , Animais , Humanos , Masculino , Ligação do Par , Arvicolinae/genética , Proteínas de Ligação a DNA , Comportamento Social
2.
Front Endocrinol (Lausanne) ; 13: 956169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992114

RESUMO

Disruptions to the circadian system alter reproductive capacity, particularly in females. Mice lacking the core circadian clock gene, Bmal1, are infertile and have evidence of neuroendocrine disruption including the absence of the preovulatory luteinizing hormone (LH) surge and enhanced responsiveness to exogenous kisspeptin. Here, we explore the role of Bmal1 in suprachiasmatic nucleus (SCN) neuron populations known to project to the neuroendocrine axis. We generated four mouse lines using Cre/Lox technology to create conditional deletion of Bmal1 in arginine vasopressin (Bmal1fl/fl:Avpcre ), vasoactive intestinal peptide (Bmal1fl/fl:Vipcre ), both (Bmal1fl/fl:Avpcre+Vipcre ), and neuromedin-s (Bmal1fl/fl:Nmscre ) neurons. We demonstrate that the loss of Bmal1 in these populations has substantial effects on home-cage circadian activity and temperature rhythms. Despite this, we found that female mice from these lines demonstrated normal estrus cycles, fecundity, kisspeptin responsiveness, and inducible LH surge. We found no evidence of reproductive disruption in constant darkness. Overall, our results indicate that while conditional Bmal1 knockout in AVP, VIP, or NMS neurons is sufficient to disrupted locomotor activity, this disruption is insufficient to recapitulate the neuroendocrine reproductive effects of the whole-body Bmal1 knockout.


Assuntos
Neurônios do Núcleo Supraquiasmático , Peptídeo Intestinal Vasoativo , Animais , Arginina Vasopressina/genética , Ritmo Circadiano/fisiologia , Feminino , Fertilidade , Kisspeptinas/genética , Hormônio Luteinizante , Camundongos , Núcleo Supraquiasmático/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo
3.
Genes Brain Behav ; 21(3): e12786, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044090

RESUMO

In pair bonding animals, coordinated behavior between partners is required for the pair to accomplish shared goals such as raising young. Despite this, experimental designs rarely assess the behavior of both partners within a bonded pair. Thus, we lack an understanding of the interdependent behavioral dynamics between partners that likely facilitate relationship success. To identify intra-pair behavioral correlates of pair bonding, we used socially monogamous prairie voles (Microtus ochrogaster) and tested both partners using social choice and non-choice tests at short- and long-term pairing timepoints. Females developed a preference for their partner more rapidly than males, with preference driven by different behaviors in each sex. Further, as bonds matured, intra-pair behavioral sex differences and organized behavior emerged-females consistently huddled more with their partner than males did regardless of overall intra-pair affiliation levels. When animals were allowed to freely interact with a partner or a novel vole in sequential free interaction tests, pairs spent more time interacting together than either animal did with a novel vole, consistent with partner preference in the more commonly employed choice test. Total pair interaction in freely moving voles was correlated with female, but not male, behavior. Via a social operant paradigm, we found that pair-bonded females, but not males, are more motivated to access and huddle with their partner than a novel vole. Together, our data indicate that as pair bonds mature, sex differences and organized behavior emerge within pairs, and that these intra-pair behavioral changes are likely organized and driven by the female animal.


Assuntos
Pradaria , Caracteres Sexuais , Animais , Arvicolinae , Proteínas de Ligação a DNA , Feminino , Masculino , Comportamento Sexual Animal , Comportamento Social
4.
J Endocr Soc ; 3(4): 716-733, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30906911

RESUMO

In rodents, the preovulatory LH surge is temporally gated, but the timing cue is unknown. Estrogen primes neurons in the anteroventral periventricular nucleus (AVPV) to secrete kisspeptin, which potently activates GnRH neurons to release GnRH, eliciting a surge of LH to induce ovulation. Deletion of the circadian clock gene Bmal1 results in infertility. Previous studies have found that Bmal1 knockout (KO) females do not display an LH surge at any time of day. We sought to determine whether neuroendocrine disruption contributes to the absence of the LH surge. Because Kiss1 expression in the AVPV is critical for regulating ovulation, we hypothesized that this population is disrupted in Bmal1 KO females. However, we found an appropriate rise in AVPV Kiss1 and Fos mRNA at the time of lights out in ovariectomized estrogen-treated animals, despite the absence of a measureable increase in LH. Furthermore, Bmal1 KO females have significantly increased LH response to kiss-10 administration, although the LH response to GnRH was unchanged. We then created Kiss1- and GnRH-specific Bmal1 KO mice to examine whether Bmal1 expression is necessary within either kisspeptin or GnRH neurons. We detected no significant differences in any measured reproductive parameter. Our results indicate that disruption of the hypothalamic regulation of fertility in the Bmal1 KO females is not dependent on endogenous clocks within either the GnRH or kisspeptin neurons.

5.
PLoS One ; 11(7): e0158597, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27389022

RESUMO

Gonadotropin-releasing hormone (GnRH), a neuropeptide released from a small population of neurons in the hypothalamus, is the central mediator of the hypothalamic-pituitary-gonadal axis, and is required for normal reproductive development and function. Evolutionarily conserved regulatory elements in the mouse, rat, and human Gnrh1 gene include three enhancers and the proximal promoter, which confer Gnrh1 gene expression specifically in GnRH neurons. In immortalized mouse hypothalamic GnRH (GT1-7) neurons, which show pulsatile GnRH release in culture, RNA sequencing and RT-qPCR revealed that expression of a novel long noncoding RNA at Gnrh1 enhancer 1 correlates with high levels of GnRH mRNA expression. In GT1-7 neurons, which contain a transgene carrying 3 kb of the rat Gnrh1 regulatory region, both the mouse and rat Gnrh1 enhancer-derived noncoding RNAs (GnRH-E1 RNAs) are expressed. We investigated the characteristics and function of the endogenous mouse GnRH-E1 RNA. Strand-specific RT-PCR analysis of GnRH-E1 RNA in GT1-7 cells revealed GnRH-E1 RNAs that are transcribed in the sense and antisense directions from distinct 5' start sites, are 3' polyadenylated, and are over 2 kb in length. These RNAs are localized in the nucleus and have a half-life of over 8 hours. In GT1-7 neurons, siRNA knockdown of mouse GnRH-E1 RNA resulted in a significant decrease in the expression of the Gnrh1 primary transcript and Gnrh1 mRNA. Over-expression of either the sense or antisense mouse GnRH-E1 RNA in immature, migratory GnRH (GN11) neurons, which do not express either GnRH-E1 RNA or GnRH mRNA, induced the transcriptional activity of co-transfected rat Gnrh1 gene regulatory elements, where the induction requires the presence of the rat Gnrh1 promoter. Together, these data indicate that GnRH-E1 RNA is an inducer of Gnrh1 gene expression. GnRH-E1 RNA may play an important role in the development and maturation of GnRH neurons.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Neurônios/metabolismo , Precursores de Proteínas/genética , RNA não Traduzido/genética , Animais , Dactinomicina/química , Fertilidade , Humanos , Hipotálamo/metabolismo , Camundongos , Células NIH 3T3 , Neuropeptídeos/metabolismo , Poliadenilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Ratos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA