Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Clin Infect Dis ; 78(4): 833-841, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823484

RESUMO

BACKGROUND: The gastrointestinal microbiota is an important line of defense against colonization with antimicrobial resistant (AR) bacteria. In this post hoc analysis of the phase 3 ECOSPOR III trial, we assessed impact of a microbiota-based oral therapeutic (fecal microbiota spores, live; VOWST Oral Spores [VOS], formerly SER-109]; Seres Therapeutics) compared with placebo, on AR gene (ARG) abundance in patients with recurrent Clostridioides difficile infection (rCDI). METHODS: Adults with rCDI were randomized to receive VOS or placebo orally for 3 days following standard-of-care antibiotics. ARG and taxonomic profiles were generated using whole metagenomic sequencing of stool at baseline and weeks 1, 2, 8, and 24 posttreatment. RESULTS: Baseline (n = 151) and serial posttreatment stool samples collected through 24 weeks (total N = 472) from 182 patients (59.9% female; mean age: 65.5 years) in ECOSPOR III as well as 68 stool samples obtained at a single time point from a healthy cohort were analyzed. Baseline ARG abundance was similar between arms and significantly elevated versus the healthy cohort. By week 1, there was a greater decline in ARG abundance in VOS versus placebo (P = .003) in association with marked decline of Proteobacteria and repletion of spore-forming Firmicutes, as compared with baseline. We observed abundance of Proteobacteria and non-spore-forming Firmicutes were associated with ARG abundance, while spore-forming Firmicutes abundance was negatively associated. CONCLUSIONS: This proof-of-concept analysis suggests that microbiome remodeling with Firmicutes spores may be a potential novel approach to reduce ARG colonization in the gastrointestinal tract.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Adulto , Humanos , Feminino , Idoso , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transplante de Microbiota Fecal , Clostridioides difficile/genética , Farmacorresistência Bacteriana , Infecções por Clostridium/microbiologia , Bactérias , Firmicutes
2.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36140013

RESUMO

Clostridioides difficile infection (CDI) is classified as an urgent health threat by the Centers for Disease Control and Prevention (CDC), and affects nearly 500,000 Americans annually. Approximately 20−25% of patients with a primary infection experience a recurrence, and the risk of recurrence increases with subsequent episodes to greater than 40%. The leading risk factor for CDI is broad-spectrum antibiotics, which leads to a loss of microbial diversity and impaired colonization resistance. Current FDA-approved CDI treatment strategies target toxin or toxin-producing bacteria, but do not address microbiome disruption, which is key to the pathogenesis of recurrent CDI. Fecal microbiota transplantation (FMT) reduces the risk of recurrent CDI through the restoration of microbial diversity. However, FDA safety alerts describing hospitalizations and deaths related to pathogen transmission have raised safety concerns with the use of unregulated and unstandardized donor-derived products. SER-109 is an investigational oral microbiome therapeutic composed of purified spore-forming Firmicutes. SER-109 was superior to a placebo in reducing CDI recurrence at Week 8 (12% vs. 40%, respectively; p < 0.001) in adults with a history of recurrent CDI with a favorable observed safety profile. Here, we discuss the role of the microbiome in CDI pathogenesis and the clinical development of SER-109, including its rigorous manufacturing process, which mitigates the risk of pathogen transmission. Additionally, we discuss compositional and functional changes in the gastrointestinal microbiome in patients with recurrent CDI following treatment with SER-109 that are critical to a sustained clinical response.

3.
N Engl J Med ; 386(3): 220-229, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35045228

RESUMO

BACKGROUND: Current therapies for recurrent Clostridioides difficile infection do not address the disrupted microbiome, which supports C. difficile spore germination into toxin-producing bacteria. SER-109 is an investigational microbiome therapeutic composed of purified Firmicutes spores for the treatment of recurrent C. difficile infection. METHODS: We conducted a phase 3, double-blind, randomized, placebo-controlled trial in which patients who had had three or more episodes of C. difficile infection (inclusive of the qualifying acute episode) received SER-109 or placebo (four capsules daily for 3 days) after standard-of-care antibiotic treatment. The primary efficacy objective was to show superiority of SER-109 as compared with placebo in reducing the risk of C. difficile infection recurrence up to 8 weeks after treatment. Diagnosis by toxin testing was performed at trial entry, and randomization was stratified according to age and antibiotic agent received. Analyses of safety, microbiome engraftment, and metabolites were also performed. RESULTS: Among the 281 patients screened, 182 were enrolled. The percentage of patients with recurrence of C. difficile infection was 12% in the SER-109 group and 40% in the placebo group (relative risk, 0.32; 95% confidence interval [CI], 0.18 to 0.58; P<0.001 for a relative risk of <1.0; P<0.001 for a relative risk of <0.833). SER-109 led to less frequent recurrence than placebo in analyses stratified according to age stratum (relative risk, 0.24 [95% CI, 0.07 to 0.78] for patients <65 years of age and 0.36 [95% CI, 0.18 to 0.72] for those ≥65 years) and antibiotic received (relative risk, 0.41 [95% CI, 0.22 to 0.79] with vancomycin and 0.09 [95% CI, 0.01 to 0.63] with fidaxomicin). Most adverse events were mild to moderate and were gastrointestinal in nature, with similar numbers in the two groups. SER-109 dose species were detected as early as week 1 and were associated with bile-acid profiles that are known to inhibit C. difficile spore germination. CONCLUSIONS: In patients with symptom resolution of C. difficile infection after treatment with standard-of-care antibiotics, oral administration of SER-109 was superior to placebo in reducing the risk of recurrent infection. The observed safety profile of SER-109 was similar to that of placebo. (Funded by Seres Therapeutics; ECOSPOR III ClinicalTrials.gov number, NCT03183128.).


Assuntos
Clostridioides difficile , Infecções por Clostridium/terapia , Firmicutes , Idoso , Antibacterianos/efeitos adversos , Método Duplo-Cego , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Análise de Intenção de Tratamento , Masculino , Microbiota/efeitos dos fármacos , Pessoa de Meia-Idade , Recidiva , Prevenção Secundária , Esporos Bacterianos
4.
NPJ Biofilms Microbiomes ; 7(1): 16, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547298

RESUMO

C. difficile infection (CDI) is a worldwide healthcare problem with ~30% of cases failing primary therapy, placing a burden on healthcare systems and increasing patient morbidity. We have little understanding of why these therapies fail. Here, we use a clinically validated in vitro gut model to assess the contribution of biofilms towards recurrent disease and to investigate biofilm microbiota-C. difficile interactions. Initial experiments show that C. difficile cells became associated with the colonic biofilm microbiota and are not depleted by vancomycin or faecal microbiota transplant therapies. We observe that transferring biofilm encased C. difficile cells into a C. difficile naïve but CDI susceptible model induces CDI. Members of the biofilm community can impact C. difficile biofilm formation by acting either antagonistically or synergistically. We highlight the importance of biofilms as a reservoir for C. difficile, which can be a cause for recurrent infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Colo/microbiologia , Idoso , Idoso de 80 Anos ou mais , Técnicas Bacteriológicas , Biofilmes/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Colo/efeitos dos fármacos , Transplante de Microbiota Fecal , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Reinfecção/tratamento farmacológico , Reinfecção/microbiologia , Vancomicina/farmacologia
5.
PLoS Med ; 17(3): e1003051, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150549

RESUMO

BACKGROUND: There is intense interest about whether modulating gut microbiota can impact systemic metabolism. We investigated the safety of weekly oral fecal microbiota transplantation (FMT) capsules from healthy lean donors and their ability to alter gut microbiota and improve metabolic outcomes in patients with obesity. METHODS AND FINDINGS: FMT-TRIM was a 12-week double-blind randomized placebo-controlled pilot trial of oral FMT capsules performed at a single US academic medical center. Between August 2016 and April 2018, we randomized 24 adults with obesity and mild-moderate insulin resistance (homeostatic model assessment of insulin resistance [HOMA-IR] between 2.0 and 8.0) to weekly healthy lean donor FMT versus placebo capsules for 6 weeks. The primary outcome, assessed by intention to treat, was change in insulin sensitivity between 0 and 6 weeks as measured by hyperinsulinemic euglycemic clamps. Additional metabolic parameters were evaluated at 0, 6, and 12 weeks, including HbA1c, body weight, body composition by dual-energy X-ray absorptiometry, and resting energy expenditure by indirect calorimetry. Fecal samples were serially collected and evaluated via 16S V4 rRNA sequencing. Our study population was 71% female, with an average baseline BMI of 38.8 ± 6.7 kg/m2 and 41.3 ± 5.1 kg/m2 in the FMT and placebo groups, respectively. There were no statistically significant improvements in insulin sensitivity in the FMT group compared to the placebo group (+5% ± 12% in FMT group versus -3% ± 32% in placebo group, mean difference 9%, 95% CI -5% to 28%, p = 0.16). There were no statistically significant differences between groups for most of the other secondary metabolic outcomes, including HOMA-IR (mean difference 0.2, 95% CI -0.9 to 0.9, p = 0.96) and body composition (lean mass mean difference -0.1 kg, 95% CI -1.9 to 1.6 kg, p = 0.87; fat mass mean difference 1.2 kg, 95% CI -0.6 to 3.0 kg, p = 0.18), over the 12-week study. We observed variable engraftment of donor bacterial groups among FMT recipients, which persisted throughout the 12-week study. There were no significant differences in adverse events (AEs) (10 versus 5, p = 0.09), and no serious AEs related to FMT. Limitations of this pilot study are the small sample size, inclusion of participants with relatively mild insulin resistance, and lack of concurrent dietary intervention. CONCLUSIONS: Weekly administration of FMT capsules in adults with obesity results in gut microbiota engraftment in most recipients for at least 12 weeks. Despite engraftment, we did not observe clinically significant metabolic effects during the study. TRIAL REGISTRATION: ClinicalTrials.gov NCT02530385.


Assuntos
Metabolismo Energético , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Resistência à Insulina , Intestinos/microbiologia , Obesidade/terapia , Adulto , Biomarcadores/sangue , Boston , Método Duplo-Cego , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/metabolismo , Obesidade/microbiologia , Projetos Piloto , Fatores de Tempo , Resultado do Tratamento
6.
Front Microbiol ; 8: 1786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085339

RESUMO

Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as carbon source did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.

7.
Nat Microbiol ; 2(10): 1367-1373, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28808230

RESUMO

The core properties of microbial genomes, including GC content and genome size, are known to vary widely among different bacteria and archaea 1,2 . Several hypotheses have been proposed to explain this genomic variability, but the fundamental drivers that shape bacterial and archaeal genomic properties remain uncertain 3-7 . Here, we report the existence of a sharp genomic transition zone below the photic zone, where bacterial and archaeal genomes and proteomes undergo a community-wide punctuated shift. Across a narrow range of increasing depth of just tens of metres, diverse microbial clades trend towards larger genome size, higher genomic GC content, and proteins with higher nitrogen but lower carbon content. These community-wide changes in genome features appear to be driven by gradients in the surrounding environmental energy and nutrient fields. Collectively, our data support hypotheses invoking nutrient limitation as a central driver in the evolution of core bacterial and archaeal genomic and proteomic properties.


Assuntos
Meio Ambiente , Genoma Microbiano , Oceanos e Mares , Proteoma/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Composição de Bases , Carbono/metabolismo , Alimentos , Genes de RNAr , Variação Genética , Tamanho do Genoma , Genoma Arqueal , Genoma Bacteriano , Nitrogênio/metabolismo , Proteômica , Microbiologia da Água
8.
mSystems ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822538

RESUMO

Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m-3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available.

9.
ISME J ; 10(6): 1308-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26645474

RESUMO

Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces.


Assuntos
Biodiversidade , Metagenômica , Consórcios Microbianos , Plâncton/microbiologia , Água do Mar/microbiologia , Ecossistema , Havaí , Oceano Pacífico , Filogenia , Estações do Ano , Luz Solar , Vento
10.
PLoS One ; 10(6): e0130659, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26102275

RESUMO

Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics.


Assuntos
Antibacterianos/biossíntese , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas Fúngicas/genética , Fungos/genética , Genes Bacterianos , Genes Fúngicos , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/enzimologia , Actinobacteria/genética , Bactérias/classificação , Bactérias/enzimologia , Teorema de Bayes , Biodiversidade , Bioprospecção , Bases de Dados Genéticas , Ecossistema , Fungos/classificação , Fungos/enzimologia , Funções Verossimilhança , Filogenia , Filogeografia , Plantas , Policetídeo Sintases/classificação , Policetídeo Sintases/genética , Policetídeos/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
11.
Environ Microbiol ; 16(9): 2815-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24118765

RESUMO

A considerable fraction of the Earth's organic carbon exists in dissolved form in seawater. To investigate the roles of planktonic marine microbes in the biogeochemical cycling of this dissolved organic matter (DOM), we performed controlled seawater incubation experiments and followed the responses of an oligotrophic surface water microbial assemblage to perturbations with DOM derived from an axenic culture of Prochlorococcus, or high-molecular weight DOM concentrated from nearby surface waters. The rapid transcriptional responses of both Prochlorococcus and Pelagibacter populations suggested the utilization of organic nitrogen compounds common to both DOM treatments. Along with these responses, both populations demonstrated decreases in gene transcripts associated with nitrogen stress, including those involved in ammonium acquisition. In contrast, responses from low abundance organisms of the NOR5/OM60 gammaproteobacteria were observed later in the experiment, and included elevated levels of gene transcripts associated with polysaccharide uptake and oxidation. In total, these results suggest that numerically dominant oligotrophic microbes rapidly acquire nitrogen from commonly available organic sources, and also point to an important role for carbohydrates found within the DOM pool for sustaining the less abundant microorganisms in these oligotrophic systems.


Assuntos
Gammaproteobacteria/genética , Nitrogênio/metabolismo , Compostos Orgânicos/metabolismo , Prochlorococcus/genética , Água do Mar/microbiologia , DNA Bacteriano/genética , Gammaproteobacteria/metabolismo , Metagenoma , Prochlorococcus/metabolismo , RNA Bacteriano/genética , Análise de Sequência de DNA , Transcrição Gênica , Transcriptoma
12.
PLoS One ; 8(11): e79853, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265787

RESUMO

Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue.


Assuntos
Ecossistema , Incêndios , Polinização , Agricultura , Fenômenos Fisiológicos Vegetais , Densidade Demográfica
13.
Ecology ; 93(7): 1659-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22919912

RESUMO

Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Oxigênio/química , Filogenia , Água/química , Bactérias/genética , DNA Bacteriano/classificação , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genômica , Oceanos e Mares
14.
Genome Biol ; 12(3): R26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21426537

RESUMO

BACKGROUND: Combined metagenomic and metatranscriptomic datasets make it possible to study the molecular evolution of diverse microbial species recovered from their native habitats. The link between gene expression level and sequence conservation was examined using shotgun pyrosequencing of microbial community DNA and RNA from diverse marine environments, and from forest soil. RESULTS: Across all samples, expressed genes with transcripts in the RNA sample were significantly more conserved than non-expressed gene sets relative to best matches in reference databases. This discrepancy, observed for many diverse individual genomes and across entire communities, coincided with a shift in amino acid usage between these gene fractions. Expressed genes trended toward GC-enriched amino acids, consistent with a hypothesis of higher levels of functional constraint in this gene pool. Highly expressed genes were significantly more likely to fall within an orthologous gene set shared between closely related taxa (core genes). However, non-core genes, when expressed above the level of detection, were, on average, significantly more highly expressed than core genes based on transcript abundance normalized to gene abundance. Finally, expressed genes showed broad similarities in function across samples, being relatively enriched in genes of energy metabolism and underrepresented by genes of cell growth. CONCLUSIONS: These patterns support the hypothesis, predicated on studies of model organisms, that gene expression level is a primary correlate of evolutionary rate across diverse microbial taxa from natural environments. Despite their complexity, meta-omic datasets can reveal broad evolutionary patterns across taxonomically, functionally, and environmentally diverse communities.


Assuntos
Sequência Conservada , Metagenômica , Transcriptoma , Sequência de Aminoácidos , Composição de Bases , Análise por Conglomerados , DNA Complementar , Ecossistema , Evolução Molecular , Perfilação da Expressão Gênica , Filogenia , RNA Ribossômico , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo
15.
Ecol Lett ; 14(2): 141-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21166972

RESUMO

Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.


Assuntos
Biota , Magnoliopsida/classificação , Austrália , California , Chile , Conservação dos Recursos Naturais , Ecologia , Modelos Biológicos , Filogenia , Dinâmica Populacional , África do Sul , Árvores/classificação
16.
Proc Natl Acad Sci U S A ; 105 Suppl 1: 11505-11, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18695215

RESUMO

The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ.


Assuntos
Altitude , Bactérias/classificação , Plantas/classificação , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA