Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885848

RESUMO

Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.


Assuntos
Fosfolipases A2 do Grupo II/metabolismo , Desenvolvimento de Medicamentos , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Fosfolipases A2 do Grupo II/farmacologia , Humanos , Neoplasias/diagnóstico , Neoplasias/enzimologia , Prognóstico
2.
Immun Inflamm Dis ; 4(1): 64-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27042302

RESUMO

Mast cells (MCs) participate in diseases such as systemic mastocytosis (SM) and allergic conditions. Less well understood is the role of MCs in non-allergic inflammatory disorders like rheumatoid arthritis (RA). Studying definitive roles for MCs in human diseases has been hampered by the lack of a well-accepted biomarker for monitoring in vivo MC activation. This study aimed to investigate the utility of urinary tetranor PGDM (T-PGDM) as a biomarker of in vivo MC activation in patients with SM, and apply this biomarker to assess MC involvement in relation to RA disease activity. A prospective, cross-sectional cohort study was conducted to measure a major urinary metabolite of prostaglandin D2, T-PGDM. Urine samples were collected from patients with RA (n = 60), SM (n = 17) and healthy normal controls (n = 16) and T-PGDM excretion was determined by enzyme immunoassay as nanograms per milligram of urinary creatinine (ng/mg Cr). Mean urinary T-PGDM excretion was significantly higher (p < 0.01) in patients with SM compared to controls (37.2 vs. 11.5 ng/mg Cr) with 65% of SM patients showing elevated levels. One third of patients with RA had elevated T-PGDM excretion, and the mean level in the RA group (20.0 ng/mg Cr) was significantly higher than controls (p < 0.01). Medications inhibiting cyclooxygenase reduced T-PGDM excretion. Urinary T-PGDM excretion appears promising as a biomarker of in vivo MC activity and elevated levels in 33% of patients with RA provides evidence of MC activation in this disease.

3.
J Innate Immun ; 6(6): 727-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033984

RESUMO

The ideal immune response is rapid, proportionate and effective. Crucially, it must also be finite. An inflammatory response which is disproportionate or lasts too long risks injury to the host; chronic un-regulated inflammation in autoimmune diseases is one example of this. Thus, mechanisms to regulate and ultimately terminate immune responses are central to a healthy immune system. Despite extensive knowledge of what drives immune responses, our understanding of mechanisms of immune termination remains relatively sparse. It is clear that such processes are more complex than a one-dimensional homeostatic balance. Recent discoveries have revealed ever more nuanced mechanisms of signal termination, such as intrinsically self-limiting signals, multiple inhibitory mechanisms acting in tandem and activating proteins behaving differently in a variety of contexts. This review will summarise some important mechanisms, including termination by immunoreceptor tyrosine-based inhibitory motifs (ITIM), inhibition by soluble antagonists, receptor endocytosis or ubiquitination, and auto-inhibition by newly synthesised intracellular inhibitory molecules. Several recent discoveries showing immunoreceptor tyrosine-based activation motifs transducing inhibitory signals, ITIM mediating activating responses and the possible roles of immunoreceptor tyrosine-based switch motifs will also be explored.


Assuntos
Endocitose/imunologia , Sistema Imunitário/fisiologia , Motivo de Inibição do Imunorreceptor Baseado em Tirosina/imunologia , Ubiquitinação/imunologia , Animais , Humanos , Transdução de Sinais
4.
J Immunol ; 191(3): 1404-12, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23797671

RESUMO

Mouse mast cell protease (mMCP)-6-null C57BL/6 mice lost less aggrecan proteoglycan from the extracellular matrix of their articular cartilage during inflammatory arthritis than wild-type (WT) C57BL/6 mice, suggesting that this mast cell (MC)-specific mouse tryptase plays prominent roles in articular cartilage catabolism. We used ex vivo mouse femoral head explants to determine how mMCP-6 and its human ortholog hTryptase-ß mediate aggrecanolysis. Exposure of the explants to recombinant hTryptase-ß, recombinant mMCP-6, or lysates harvested from WT mouse peritoneal MCs (PMCs) significantly increased the levels of enzymatically active matrix metalloproteinases (MMP) in cartilage and significantly induced aggrecan loss into the conditioned media, relative to replicate explants exposed to medium alone or lysates collected from mMCP-6-null PMCs. Treatment of cartilage explants with tetramer-forming tryptases generated aggrecan fragments that contained C-terminal DIPEN and N-terminal FFGVG neoepitopes, consistent with MMP-dependent aggrecanolysis. In support of these data, hTryptase-ß was unable to induce aggrecan release from the femoral head explants obtained from Chloe mice that resist MMP cleavage at the DIPEN↓FFGVG site in the interglobular domain of aggrecan. In addition, the abilities of mMCP-6-containing lysates from WT PMCs to induce aggrecanolysis were prevented by inhibitors of MMP-3 and MMP-13. Finally, recombinant hTryptase-ß was able to activate latent pro-MMP-3 and pro-MMP-13 in vitro. The accumulated data suggest that human and mouse tetramer-forming tryptases are MMP convertases that mediate cartilage damage and the proteolytic loss of aggrecan proteoglycans in arthritis, in part, by activating the zymogen forms of MMP-3 and MMP-13, which are constitutively present in articular cartilage.


Assuntos
Agrecanas/metabolismo , Cartilagem Articular/metabolismo , Mastócitos/imunologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Animais , Artrite/metabolismo , Células Cultivadas , Precursores Enzimáticos/metabolismo , Matriz Extracelular/metabolismo , Inflamação , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triptases/deficiência , Triptases/genética , Triptases/metabolismo
5.
J Biol Chem ; 288(21): 15269-79, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23482564

RESUMO

Human group IIA secreted phospholipase A2 (hGIIA) promotes tumor growth and inflammation and can act independently of its well described catalytic lipase activity via an alternative poorly understood signaling pathway. With six chemically diverse inhibitors we show that it is possible to selectively inhibit hGIIA signaling over catalysis, and x-ray crystal structures illustrate that signaling involves a pharmacologically distinct surface to the catalytic site. We demonstrate in rheumatoid fibroblast-like synoviocytes that non-catalytic signaling is associated with rapid internalization of the enzyme and colocalization with vimentin. Trafficking of exogenous hGIIA was monitored with immunofluorescence studies, which revealed that vimentin localization is disrupted by inhibitors of signaling that belong to a rare class of small molecule inhibitors that modulate protein-protein interactions. This study provides structural and pharmacological evidence for an association between vimentin, hGIIA, and arachidonic acid metabolism in synovial inflammation, avenues for selective interrogation of hGIIA signaling, and new strategies for therapeutic hGIIA inhibitor design.


Assuntos
Ácido Araquidônico/metabolismo , Artrite Reumatoide/metabolismo , Inibidores Enzimáticos/farmacologia , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/metabolismo , Vimentina/metabolismo , Animais , Ácido Araquidônico/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Células CHO , Cricetinae , Cricetulus , Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Feminino , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/metabolismo , Humanos , Masculino , Transdução de Sinais/genética , Membrana Sinovial/patologia , Vimentina/genética
6.
J Biol Chem ; 286(4): 2492-503, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21068383

RESUMO

Human group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is an important regulator of cytokine-mediated inflammatory responses in both in vitro and in vivo models of rheumatoid arthritis (RA). However, treatment of RA patients with sPLA(2)-IIA inhibitors shows only transient benefit. Using an activity-impaired sPLA(2)-IIA mutant protein (H48Q), we show that up-regulation of TNF-dependent PGE(2) production and cyclooxygenase-2 (COX-2) induction by exogenous sPLA(2)-IIA in RA fibroblast-like synoviocytes (FLSs) is independent of its enzyme function. Selective cytosolic phospholipase A(2)-α (cPLA(2)-α) inhibitors abrogate TNF/sPLA(2)-IIA-mediated PGE(2) production without affecting COX-2 levels, indicating arachidonic acid (AA) flux to COX-2 occurs exclusively through TNF-mediated activation of cPLA(2)-α. Nonetheless, exogenous sPLA(2)-IIA, but not H48Q, stimulates both AA mobilization from FLSs and microparticle-derived AA release that is not used for COX-2-dependent PGE(2) production. sPLA(2)-IIA-mediated AA production is inhibited by pharmacological blockade of sPLA(2)-IIA but not cPLA(2)-α. Exogenous H48Q alone, like sPLA(2)-IIA, increases COX-2 protein levels without inducing PGE(2) production. Unlike TNF, sPLA(2)-IIA alone does not rapidly mobilize NF-κB or activate phosphorylation of p38 MAPK, two key regulators of COX-2 protein expression, but does activate the ERK1/2 pathway. Thus, sPLA(2)-IIA regulates AA flux through the cPLA(2)-α/COX-2 pathway in RA FLSs by up-regulating steady state levels of these biosynthetic enzymes through an indirect mechanism, rather than direct provision of substrate to the pathway. Inhibitors that have been optimized for their potency in enzyme activity inhibition alone may not adequately block the activity-independent function of sPLA(2)-IIA.


Assuntos
Ácido Araquidônico/metabolismo , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Líquido Sinovial/metabolismo , Substituição de Aminoácidos , Animais , Ácido Araquidônico/genética , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Linhagem Celular , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Dinoprostona/biossíntese , Dinoprostona/genética , Cães , Fibroblastos/patologia , Fosfolipases A2 do Grupo II/genética , Humanos , Mutação de Sentido Incorreto , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Biol Chem ; 283(49): 34178-87, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18854315

RESUMO

Tryptases are serine proteases that are thought to be uniquely and proteolytically active as tetramers. Crystallographic studies reveal that the active tetramer is a flat ring structure composed of four monomers, with their active sites arranged around a narrow central pore. This model explains why many of the preferred substrates of tryptase are short peptides; however, it does not explain how tryptase cleaves large protein substrates such as fibronectin, although a number of studies have reported in vitro mechanisms for generating active monomers that could digest larger substrates. Here we suggest that alternate mRNA splicing of human tryptase genes generates active tryptase monomers (or dimers). We have identified a conserved pattern of alternate splicing in four tryptase alleles (alphaII, betaI, betaIII, and deltaI), representing three distinct tryptase gene loci. When compared with their full-length counterparts, the splice variants use an alternate acceptor site within exon 4. This results in the deletion of 27 nucleotides within the central coding sequence and 9 amino acids from the translated protein product. Although modeling suggests that the deletion can be easily accommodated by the enzymes structurally, it is predicted to alter the specificity by enlarging the S1' or S2' binding pocket and results in the complete loss of the "47 loop," reported to be critical for the formation of tetramers. Although active monomers can be generated in vitro using a range of artificial conditions, we suggest that alternate splicing is the in vivo mechanism used to generate active tryptase that can cleave large protein substrates.


Assuntos
Processamento Alternativo , Regulação Enzimológica da Expressão Gênica , Triptases/biossíntese , Triptases/genética , Sequência de Aminoácidos , Sequência de Bases , Éxons , Etiquetas de Sequências Expressas , Humanos , Conformação Molecular , Dados de Sequência Molecular , Pichia/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Triptases/química
8.
J Proteome Res ; 6(9): 3796-807, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17655345

RESUMO

The unique pluripotential characteristic of human embryonic stem cells heralds their use in fields such as medicine, biotechnology, biopharmaceuticals, and developmental biology. However, the current availability of sufficient quantities of embryonic stem cells for such applications is limited, and generating sufficient numbers for downstream therapeutic applications is a key concern. In the absence of feeder layers or their conditioned media, human embryonic stem cells readily differentiate to form embryoid bodies, indicating that trophic factors secreted by the feeder layers are required for long-term proliferation and maintenance of pluripotency. Adding further complexity to the elucidation of the factors required for the maintenance of pluripotency is the variability of different fibroblast feeder layers (of mouse or human origin) to effectively support human embryonic stem cells. Currently, the deficiency of knowledge concerning the exact identity of factors within the pathways for self-renewal illustrates that a number of factors may be required to support pluripotent, undifferentiated growth of human embryonic stem cells. This study utilized a proteomic analysis (multidimensional chromatography coupled to tandem mass spectrometry) to isolate and identify proteins in the conditioned media of three mitotically inactivated fibroblast lines (human fetal, human neonatal, and mouse embryonic fibroblasts) used to support the undifferentiated growth of human embryonic stem cells. One-hundred seventy-five unique proteins were identified between the three cell lines using a

Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Proteômica/métodos , Animais , Bovinos , Diferenciação Celular , Cromatografia Líquida/métodos , Meios de Cultivo Condicionados/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espectrometria de Massas , Camundongos , Fator de Crescimento Transformador beta/metabolismo
9.
Proteomics ; 5(4): 978-89, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15712233

RESUMO

The pathways involved in the maintenance of human embryonic stem (hES) cells remain largely unknown, although some signaling pathways have been identified in mouse embryonic stem (mES) cells. Fibroblast feeder layers are used to maintain the undifferentiated growth of hES cells and an examination of the conditioned media (CM) of human neonatal fibroblasts (HNFs) could provide insights into the maintenance of hES cells. The neonatal foreskin fibroblast line (HNF02) used in this study was shown to have a normal 2n = 46, XY chromosomal complement and to support the undifferentiated growth of the Embryonic Stem Cell International Pte. Ltd.-hES3 cell line. The CM of HNF02 was examined using two-dimensional liquid chromatography-tandem mass spectrometry (2-D LCMS) and two-dimensional electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (2-DE/MALDI). A total of 102 proteins were identified, 19 by 2-DE/MALDI, 53 by 2-D LCMS and 30 by both techniques. These proteins were classified into 15 functional groups. Proteins identified in the extracellular matrix and differentiation and growth factor functional categories were considered most likely to be involved in the maintenance of hES cell growth, differentiation and pluripotency as these groups contained proteins involved in a variety of events including cell adhesion, cell proliferation and inhibition of cell proliferation, Wnt signaling and inhibition of bone morphogenetic proteins.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Proteômica/métodos , Células-Tronco/citologia , Proteínas Morfogenéticas Ósseas/química , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cromatografia Líquida , Técnicas de Cocultura , Citogenética , Eletroforese em Gel Bidimensional , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido , Cariotipagem , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Expert Opin Ther Targets ; 7(3): 427-40, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12783578

RESUMO

Homology cloning through in silico database search analysis has led to the definition of ten structurally-related mammalian secreted phospholipase A(2) (sPLA(2)) enzyme forms at present, each expressed in a species-, genotype- and cell-type-specific manner and with different enzymatic properties. These studies have shown that models based on the premise that there is only one PLA(2) drug target are now inadequate. Type IIA sPLA(2) remains the most advanced clinical target, with rationally designed inhibitors in Phase II clinical trials. However, progress in our understanding of the functional role of the ten secreted enzymes in phospholipid (PL) metabolism and in eicosanoid-mediated disorders, together with their emerging activity-independent and receptor-mediated functions, is likely to significantly impact on current and future drug development efforts.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Fosfolipases A/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/enzimologia , Ensaios Clínicos Fase II como Assunto , Método Duplo-Cego , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Eicosanoides/biossíntese , Fosfolipases A2 do Grupo II , Humanos , Mamíferos/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Estudos Multicêntricos como Assunto , Família Multigênica , Especificidade de Órgãos , Fosfolipases A/classificação , Fosfolipases A/genética , Fosfolipases A/metabolismo , Fosfolipases A2 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA