RESUMO
Oxybutynin (Ditropan), a widely distributed muscarinic antagonist for treating the overactive bladder, has been awaiting a definitive crystal structure for ≈50 years due to the sample and technique limitations. Past reports used powder X-ray diffraction (PXRD) to shed light on the possible packing of the molecule however their model showed some inconsistencies when compared with the 2D chemical structure. These are largely attributed to X-ray-induced photoreduction. Here microcrystal electron diffraction (MicroED) is used to successfully unveil the experimental 3D structure of oxybutynin hydrochloride showing marked improvement over the reported PXRD structure. Using the improved model, molecular docking is applied to investigate the binding mechanism between M3 muscarinic receptor (M3R) and (R)-oxybutynin, revealing essential contacts/residues and conformational changes within the protein pocket. A possible universal conformation is proposed for M3R antagonists, which is valuable for future drug development and optimization. This study underscores the immense potential of MicroED as a complementary technique for elucidating unknown pharmaceutical structures, as well as for protein-drug interactions.
Assuntos
Ácidos Mandélicos , Simulação de Acoplamento Molecular , Antagonistas Muscarínicos , Ácidos Mandélicos/química , Simulação de Acoplamento Molecular/métodos , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/farmacologia , Difração de Raios X/métodos , Modelos Moleculares , Receptor Muscarínico M3/química , Receptor Muscarínico M3/metabolismoRESUMO
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum clostripain determined at 2.5 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of clostripain shows a typical Clan CD α/ß/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 and 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
RESUMO
Microcrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the crystal cannot be arbitrarily rotated. This limits the information that can be acquired, resulting in a missing cone of information. We recently introduced a novel crystallization strategy called suspended drop crystallization and proposed that crystals in a suspended drop could effectively address the challenge of preferred crystal orientation. Here we demonstrate the success of the suspended drop approach in eliminating the missing cone in two samples that crystallize as thin plates: bovine liver catalase and the SARSCoV2 main protease (Mpro). This innovative solution proves indispensable for crystals exhibiting systematic preferred orientations, unlocking new possibilities for structure determination by MicroED.
RESUMO
Oxybutynin (Ditropan), a widely distributed muscarinic antagonist for treating the overactive bladder, has been awaiting a definitive crystal structure for nearly 50 years due to the sample and technique limitations. Past reports used powder X-ray diffraction (PCRD) to shed light on the possible packing of the molecule however a 3D structure remained elusive. Here we used Microcrystal Electron Diffraction (MicroED) to successfully unveil the 3D structure of oxybutynin hydrochloride. We identify several inconsistencies between the reported PXRD analyses and the experimental structure. Using the improved model, molecular docking was applied to investigate the binding mechanism between M3 muscarinic receptor (M3R) and (R)-oxybutynin, revealing essential contacts/residues and conformational changes within the protein pocket. A possible universal conformation was proposed for M3R antagonists, which is valuable for future drug development and optimization. This study underscores the immense potential of MicroED as a complementary technique for elucidating the unknown pharmaceutical crystal structures, as well as for the protein-drug interactions.
RESUMO
Paritaprevir is an orally bioavailable, macrocyclic drug used for treating chronic Hepatitis C virus (HCV) infection. Its structures have been elusive to the public until recently when one of the crystal forms is solved by microcrystal electron diffraction (MicroED). In this work, the MicroED structures of two distinct polymorphic crystal forms of paritaprevir are reported from the same experiment. The different polymorphs show conformational changes in the macrocyclic core, as well as the cyclopropyl sulfonamide and methyl pyrazinamide substituents. Molecular docking shows that one of the conformations fits well into the active site pocket of the HCV non-structural 3/4A (NS3/4A) serine protease target, and can interact with the pocket and catalytic triad via hydrophobic interactions and hydrogen bonds. These results can provide further insight for optimization of the binding of acyl sulfonamide inhibitors to the HCV NS3/4A serine protease. In addition, this also demonstrates the opportunity to derive different polymorphs and distinct macrocycle conformations from the same experiments using MicroED.
Assuntos
Ciclopropanos , Lactamas Macrocíclicas , Simulação de Acoplamento Molecular , Prolina , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacologia , Prolina/análogos & derivados , Prolina/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismoRESUMO
Microcrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If, as is typically the case, the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the grid cannot be arbitrarily rotated. This limits the information that can be acquired, resulting in a missing cone of information. We recently introduced a novel crystallization strategy called suspended drop crystallization and proposed that this method could effectively address the challenge of preferred crystal orientation. Here we demonstrate the success of the suspended drop crystallization approach in eliminating the missing cone in two samples that crystallize as thin plates: bovine liver catalase and the COVID-19 main protease (Mpro). This innovative solution proves indispensable for crystals exhibiting preferred orientations, unlocking new possibilities for structure determination by MicroED.
RESUMO
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum Clostripain determined at 3.6 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of Clostripain shows a typical Clan CD α/ß/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 to 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as Clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
RESUMO
Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as to act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally, and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles that have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material and that different conformations of flexible compounds can be derived from the same experiment. These results will have an impact on contemporary drug discovery as well as natural product exploration.
Assuntos
Compostos Macrocíclicos , Pós , Conformação Molecular , Compostos Macrocíclicos/química , Sítios de Ligação , Descoberta de Drogas , Microscopia Crioeletrônica/métodosRESUMO
Microcrystal electron diffraction, grazing incidence wide-angle scattering, and UV-Vis spectroscopy were used to determine the unit cell structure and the relative composition of dimethylated diketopyrrolopyrrole (MeDPP) H- and J-polymorphs within thin films subjected to vapor solvent annealing (VSA) for different times. Electronic structure and excited state deactivation pathways of the different polymorphs were examined by transient absorption spectroscopy, conductive probe atomic force microscopy, and molecular modeling. We find VSA initially converts amorphous films into mixtures of H- and J-polymorphs and promotes further conversion from H to J with longer VSA times. Though both polymorphs exhibit efficient SF to form coupled triplets, free triplet yields are higher in J-polymorph films compared to mixed films because coupling in J-aggregates is lower, and, in turn, more favorable for triplet decoupling.
RESUMO
Metabolomics has emerged as a powerful discipline to study complex biological systems from a small molecule perspective. The success of metabolomics hinges upon reliable annotations of spectral features obtained from MS and/or NMR. In spite of tremendous progress with regards to analytical instrumentation and computational tools, < 20% of spectral features are confidently identified in most untargeted metabolomics experiments. This article explores the integration of multiple analytical instruments such as UHPLC-MS/MS-SPE-NMR and the cryo-EM method MicroED to achieve large-scale and confident metabolite identifications in a higher-throughput manner. UHPLC-MS/MS-SPE allows for the simultaneous automated purification of metabolites followed by offline structure elucidation and structure validation by NMR and MicroED. Large-scale study of complex metabolomes such as that of the model plant legume Medicago truncatula can be achieved using an integrated UHPLC-MS/MS-SPE-NMR metabolomics platform. Additionally, recent developments in MicroED to study structures of small organic molecules have enabled faster, easier and precise structure determinations of metabolites. A MicroED small molecule structure elucidation workflow (e.g., crystal screening, sample preparation, data collection and data processing/structure determination) has been described. Ongoing MicroED methods development and its future scope related to structure elucidation of specialized metabolites and metabolomics are highlighted. The incorporation of MicroED with a UHPLC-MS/MS-SPE-NMR instrumental ensemble offers the potential to accelerate and achieve higher rates of metabolite identification.
RESUMO
Microcrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) technique used to determine molecular structures with crystals that are a millionth the size needed for traditional single-crystal X-ray crystallography. An exciting use of MicroED is in drug discovery and development, where it can be applied to the study of proteins and small molecule interactions, and for structure determination of natural products. The structures are then used for rational drug design and optimization. In this Perspective, we discuss the current applications of MicroED for structure determination of protein-ligand complexes and potential future applications in drug discovery.
Assuntos
Elétrons , Proteínas , Ligantes , Cristalografia por Raios X , Proteínas/química , Descoberta de DrogasRESUMO
Microcrystal Electron Diffraction (MicroED) enables structure determination of very small crystals that are much too small to be of use for other conventional diffraction techniques. MicroED has been used to determine the structures of many proteins and small organic molecules, and the technique can be performed on most standard cryo-TEM instruments equipped with high-speed detectors capable of collecting electron diffraction data. Here, we present protocols for MicroED sample preparation and data collection for protein microcrystals.
Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Proteínas/química , Manejo de Espécimes/métodos , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Coleta de Dados , Interpretação de Imagem Assistida por Computador/instrumentação , Modelos MolecularesRESUMO
The PII-like protein SbtB has been identified as a regulator of SbtA, which is one of the key bicarbonate transporters in cyanobacteria. While SbtB from Synechocystis sp. PCC 6803 has previously been shown to be a trimer, a new crystal form is reported here which crystallizes in what is thought to be a non-native tetramer in the crystal, with the C-terminus in an extended conformation. The crystal structure shows the formation of an intermolecular disulfide bond at Cys94 between SbtB monomers, which may stabilize this conformation in the crystal. This motivates the need for future studies to investigate the potential role that the oxidation and reduction of these cysteines may play in the activation and/or function of SbtB.
Assuntos
Proteínas de Bactérias/química , Bicarbonatos/química , Synechocystis/química , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechocystis/metabolismoRESUMO
The high-flux/low-affinity cyanobacterial bicarbonate transporter BicA is a member of sulfate permease/solute carrier 26 (SulP/SLC26) family and plays a major role in cyanobacterial inorganic carbon uptake. In order to study this important membrane protein, robust platforms for over-expression and protocols for purification are required. In this work we have optimized the expression and purification of BicA from strain Synechocystis sp. PCC 6803 (BicA6803) in Escherichia coli. It was determined that expression with C43 (DE3) Rosetta2 at 37 °C produced the highest levels of over-expressed BicA6803 relative to other strains screened, and membrane solubilization with n-dodecyl-ß-d-maltopyranoside facilitated the purification of high levels of stable and homogenous BicA6803. Using these expression and purification strategies, the final yields of purified BicA were 6.5 ± 1.0 mg per liter of culture.
Assuntos
Proteínas de Bactérias , Expressão Gênica , Simportadores de Sódio-Bicarbonato , Synechocystis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Simportadores de Sódio-Bicarbonato/biossíntese , Simportadores de Sódio-Bicarbonato/química , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/isolamento & purificação , Synechocystis/metabolismoRESUMO
The lipidic cubic phase (LCP) technique has proved to facilitate the growth of high-quality crystals that are otherwise difficult to grow by other methods. However, the crystal size optimization process could be time and resource consuming, if it ever happens. Therefore, improved techniques for structure determination using these small crystals is an important strategy in diffraction technology development. Microcrystal electron diffraction (MicroED) is a technique that uses a cryo-transmission electron microscopy to collect electron diffraction data and determine high-resolution structures from very thin micro- and nanocrystals. In this work, we have used modified LCP and MicroED protocols to analyze crystals embedded in LCP converted by 2-methyl-2,4-pentanediol or lipase, including Proteinase K crystals grown in solution, cholesterol crystals, and human adenosine A2A receptor crystals grown in LCP. These results set the stage for the use of MicroED to analyze microcrystalline samples grown in LCP, especially for those highly challenging membrane protein targets.
Assuntos
Microscopia Crioeletrônica/métodos , Cristalização/métodos , Lipídeos/química , Colesterol/química , Endopeptidase K/química , Glicóis/química , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/química , Receptor A2A de Adenosina/químicaRESUMO
Analysis of metal-organic framework (MOF) structure by electron microscopy and electron diffraction offers an alternative to growing large single crystals for high-resolution X-ray diffraction. However, many MOFs are electron beam-sensitive, which can make structural analysis using high-resolution electron microscopy difficult. In this work we use the microcrystal electron diffraction (MicroED) method to collect high-resolution electron diffraction data from a model beam-sensitive MOF, ZIF-8. The diffraction data could be used to determine the structure of ZIF-8 to 0.87 Å from a single ZIF-8 nanocrystal, and this refined structure compares well with previously published structures of ZIF-8 determined by X-ray crystallography. This demonstrates that MicroED can be a valuable tool for the analysis of beam-sensitive MOF structures directly from nano and microcrystalline material.
RESUMO
We use microcrystal electron diffraction (MicroED) to determine structures of three organic semiconductors, and show that these structures can be used along with grazing-incidence wide-angle X-ray scattering (GIWAXS) to understand crystal packing and orientation in thin films. Together these complimentary techniques provide unique structural insights into organic semiconductor thin films, a class of materials whose device properties and electronic behavior are sensitively dependent on solid-state order.
RESUMO
MicroED is a method which combines cryo-EM sample preparation and instrumentation, with electron and X-ray crystallography data analysis, and it has been employed to solve many protein crystal structures at high resolution. Initially, the main doubts of this method for structure determination were the dynamic scattering of electrons, which would cause severe inaccuracies in the measured intensities. In this paper, we will review the evolution of MicroED data collection and processing, the major differences of multiple scattering effects in protein crystals and inorganic material, and the advantages of continuous rotation data collection. Additionally, because of the periodic nature of the crystalline sample, radiation doses can be kept significantly lower than those used in single particle data collection. We review the work where this was used to assess the radiation damage of a high-energy electron beam on the protein molecules at much lower dose ranges compared to imaging.