Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Build Environ ; 205: 108293, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34908645

RESUMO

Airflow exhaled from sneeze and speech is an important source of viruses and droplets in daily life and may cause imperceptible virus propagation. The velocities of sneeze and speech airflow exhaled from 10 healthy young participants repeatedly using high-frequency (2986 Hz) particle image velocimetry are measured. The parameters for describing the dynamic process of sneeze airflow, such as sneeze duration time (SDT), peak velocity time (PVT), maximum velocities, and sneeze spread angle, are analyzed. The sneeze airflow lasts 430 ms (SDT) and reaches the peak velocity in the first 20 ms (PVT). The maximum sneeze airflow velocity is approximately 15.9 m/s. The temporal variation of the sneeze velocity exhibits the gamma distribution. For speech airflow, the maximum instantaneous velocity and maximum time-averaged velocity are reported. The maximum instantaneous velocity is approximately 6.25 m/s, whereas the time-averaged value is only 0.208 m/s owing to the extremely small airflow velocity among syllables. The vertical/horizontal spread angles of the airflow are 15.1°/15.4° for sneeze and 52.9°/42.9° for speech. The difference in airflow features based on gender is generally slight for both sneeze and speech. Subsequently, an ensemble-average operation is conducted to obtain the general and representative velocity distributions. We report each component of the temporal and spatial velocity distributions of the sneeze airflow and the time-averaged velocity distribution of the speech airflow. These detailed distribution data can provide a comprehensive understanding of sneeze and speech airflow movement mechanisms as well as a detailed database for future sneeze and speech computational fluid dynamics simulations.

2.
Sustain Cities Soc ; 73: 103106, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34306994

RESUMO

The global spread of coronavirus disease 2019 poses a significant threat to human health. In this study, recent research on the characteristics of expiratory particles and flow is reviewed, with a special focus on different respiratory activities, to provide guidance for reducing the viral infection risk in the built environment. Furthermore, environmental influence on particle evaporation, dispersion, and virus viability after exhalation and the current methods for infection risk assessment are reviewed. Finally, we summarize promising control strategies against infectious expiratory particles. The results show that airborne transmission is a significant viral transmission route, both in short and long ranges, from infected individuals. Relative humidity affects the evaporation and trajectories of middle-sized droplets most, and temperature accelerates the inactivation of SARS-CoV-2 both on surfaces and in aerosols. Future research is needed to improve infection risk models to better predict the infection potential of different transmission routes. Moreover, further quantitative studies on the expiratory flow features after wearing a mask are needed. Systematic investigations and the design of advanced air distribution methods, portable air cleaners, and ultraviolet germicidal irradiation systems, which have shown high efficacy in removing contaminants, are required to better control indoor viral infection.

3.
Build Environ ; 202: 108020, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34127875

RESUMO

The sudden outbreak of coronavirus (COVID-19) has infected over 100 million people and led to over two million deaths (data in January 2021), posing a significant threat to global human health. As a potential carrier of the novel coronavirus, the exhaled airflow of infected individuals through coughs is significant in virus transmission. The research of detailed airflow characteristics and velocity distributions is insufficient because most previous studies utilize particle image velocimetry (PIV) with low frequency. This study measured the airflow velocity of human coughs in a chamber using PIV with high frequency (interval: 1/2986 s) to provide a detailed validation database for droplet propagation CFD simulation. Sixty cough cases for ten young healthy nonsmoking volunteers (five males and five females) were analyzed. Ensemble-average operations were conducted to eliminate individual variations. Vertical and horizontal velocity distributions were measured around the mouth area. Overall cough characteristics such as cough duration time (CDT), peak velocity time (PVT), maximum velocities, and cough spread angle were obtained. The CDT of the cough airflow was 520-560 m s, while PVT was 20 m s. The male/female averaged maximum velocities were 15.2/13.1 m/s. The average vertical/horizontal cough spread angle was 15.3°/13.3° for males and 15.6°/14.2° for females. In addition, the spatial and temporal distributions of ensemble-averaged velocity profiles were obtained in the vertical and horizontal directions. The experimental data can provide a detailed validation database the basis for further study on the influence of cough airflow on virus transmission using computational fluid dynamic simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA