Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 495(7440): 265-9, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23455424

RESUMO

The contraction and relaxation of muscle cells is controlled by the successive rise and fall of cytosolic Ca(2+), initiated by the release of Ca(2+) from the sarcoplasmic reticulum and terminated by re-sequestration of Ca(2+) into the sarcoplasmic reticulum as the main mechanism of Ca(2+) removal. Re-sequestration requires active transport and is catalysed by the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), which has a key role in defining the contractile properties of skeletal and heart muscle tissue. The activity of SERCA is regulated by two small, homologous membrane proteins called phospholamban (PLB, also known as PLN) and sarcolipin (SLN). Detailed structural information explaining this regulatory mechanism has been lacking, and the structural features defining the pathway through which cytoplasmic Ca(2+) enters the intramembranous binding sites of SERCA have remained unknown. Here we report the crystal structure of rabbit SERCA1a (also known as ATP2A1) in complex with SLN at 3.1 Å resolution. The regulatory SLN traps the Ca(2+)-ATPase in a previously undescribed E1 state, with exposure of the Ca(2+) sites through an open cytoplasmic pathway stabilized by Mg(2+). The structure suggests a mechanism for selective Ca(2+) loading and activation of SERCA, and provides new insight into how SLN and PLB inhibition arises from stabilization of this E1 intermediate state without bound Ca(2+). These findings may prove useful in studying how autoinhibitory domains of other ion pumps modulate transport across biological membranes.


Assuntos
Cálcio/metabolismo , Citoplasma/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Magnésio/metabolismo , Modelos Moleculares , Proteínas Musculares/química , Fosforilação , Ligação Proteica , Proteolipídeos/química , Coelhos
2.
J Biol Chem ; 288(14): 9610-9618, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23420846

RESUMO

The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Asparagina/química , Bombas de Próton/fisiologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/fisiologia , Adenosina Trifosfatases/química , Arginina/química , Asparagina/genética , Transporte Biológico , Membrana Celular/enzimologia , Cristalografia por Raios X/métodos , Citosol/metabolismo , DNA/genética , Eletroquímica/métodos , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Conformação Proteica , Prótons , Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 287(34): 28336-48, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22730321

RESUMO

P5 ATPases constitute the least studied group of P-type ATPases, an essential family of ion pumps in all kingdoms of life. Although P5 ATPases are present in every eukaryotic genome analyzed so far, they have remained orphan pumps, and their biochemical function is obscure. We show that a P5A ATPase from barley, HvP5A1, locates to the endoplasmic reticulum and is able to rescue knock-out mutants of P5A genes in both Arabidopsis thaliana and Saccharomyces cerevisiae. HvP5A1 spontaneously forms a phosphorylated reaction cycle intermediate at the catalytic residue Asp-488, whereas, among all plant nutrients tested, only Ca(2+) triggers dephosphorylation. Remarkably, Ca(2+)-induced dephosphorylation occurs at high apparent [Ca(2+)] (K(i) = 0.25 mM) and is independent of the phosphatase motif of the pump and the putative binding site for transported ligands located in M4. Taken together, our results rule out that Ca(2+) is a transported substrate but indicate the presence of a cytosolic low affinity Ca(2+)-binding site, which is conserved among P-type pumps and could be involved in pump regulation. Our work constitutes the first characterization of a P5 ATPase phosphoenzyme and points to Ca(2+) as a modifier of its function.


Assuntos
Adenosina Trifosfatases/metabolismo , Cálcio/metabolismo , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Técnicas de Inativação de Genes , Teste de Complementação Genética , Hordeum/genética , Fosforilação/fisiologia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
4.
Nat Rev Mol Cell Biol ; 12(1): 60-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21179061

RESUMO

Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.


Assuntos
Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Membrana Celular/química , Humanos
5.
Proc Natl Acad Sci U S A ; 107(50): 21400-5, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098259

RESUMO

The activity of P-type plasma membrane H(+)-ATPases is modulated by H(+) and cations, with K(+) and Ca(2+) being of physiological relevance. Using X-ray crystallography, we have located the binding site for Rb(+) as a K(+) congener, and for Tb(3+) and Ho(3+) as Ca(2+) congeners. Rb(+) is found coordinated by a conserved aspartate residue in the phosphorylation domain. A single Tb(3+) ion is identified positioned in the nucleotide-binding domain in close vicinity to the bound nucleotide. Ho(3+) ions are coordinated at two distinct sites within the H(+)-ATPase: One site is at the interface of the nucleotide-binding and phosphorylation domains, and the other is in the transmembrane domain toward the extracellular side. The identified binding sites are suggested to represent binding pockets for regulatory cations and a H(+) binding site for protons leaving the pump molecule. This implicates Ho(3+) as a novel chemical tool for identification of proton binding sites.


Assuntos
Cátions/química , Membrana Celular/química , Estrutura Terciária de Proteína , Bombas de Próton/química , Prótons , Sítios de Ligação , Cristalografia por Raios X , Teste de Complementação Genética , Metais/química , Dados de Sequência Molecular , Mutação Puntual , Bombas de Próton/genética , Saccharomyces cerevisiae
6.
J Biol Chem ; 285(41): 31243-52, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20650903

RESUMO

Heavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn(2+) nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn(2+) and Cd(2+) chelator with capacity to bind 10 Zn(2+) ions per C terminus. When AtHMA4 is expressed in a Zn(2+)-sensitive zrc1 cot1 yeast strain, sequential removal of the histidine stretch and the cysteine pairs confers a gradual increase in Zn(2+) and Cd(2+) tolerance and lowered Zn(2+) and Cd(2+) content of transformed yeast cells. We conclude that the C-terminal domain of AtHMA4 serves a dual role as Zn(2+) and Cd(2+) chelator (sensor) and as a regulator of the efficiency of Zn(2+) and Cd(2+) export. The identification of a post-translational handle on Zn(2+) and Cd(2+) transport efficiency opens new perspectives for regulation of Zn(2+) nutrition and tolerance in eukaryotes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Transporte de Íons/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta ; 1797(6-7): 846-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20416272

RESUMO

Evolution of P5 type ATPases marks the origin of eukaryotes but still they remain the least characterized pumps in the superfamily of P-type ATPases. Phylogenetic analysis of available sequences suggests that P5 ATPases should be divided into at least two subgroups, P5A and P5B. P5A ATPases have been identified in the endoplasmic reticulum and seem to have basic functions in protein maturation and secretion. P5B ATPases localize to vacuolar/lysosomal or apical membranes and in animals play a role in hereditary neuronal diseases. Here we have used a bioinformatical approach to identify differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially. Together these findings indicate that P5A and P5B ATPases are structurally and functionally different.


Assuntos
Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Domínio Catalítico/genética , Biologia Computacional , Bases de Dados de Proteínas , Evolução Molecular , Humanos , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 285(10): 7344-50, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20068040

RESUMO

The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H(+)-ATPases has long been recognized to be part of a regulatory apparatus involving an autoinhibitory domain. Here we demonstrate that both the N and the C termini of the plant plasma membrane H(+)-ATPase are directly involved in controlling the pump activity state and that N-terminal displacements are coupled to secondary modifications taking place at the C-terminal end. This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary control of the enzyme activity state.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/antagonistas & inibidores , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/genética , Ativação Enzimática , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína
9.
Mol Biol Cell ; 21(5): 791-801, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053675

RESUMO

Members of the P(4) subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P(4)-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as beta-subunits in the P(4)-ATPase transport machinery. In this work, we investigated the role of Cdc50-like beta-subunits of P(4)-ATPases for targeting and function of P(4)-ATPase catalytic alpha-subunits. We show that the Arabidopsis P(4)-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like beta-subunits. However, the final cellular destination of P(4)-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS beta-subunit they were allowed to interact with.


Assuntos
Adenosina Trifosfatases/química , Arabidopsis/enzimologia , Lipídeos/química , Proteínas de Plantas/química , Catálise , Domínio Catalítico , Membrana Celular/metabolismo , Clonagem Molecular , Proteínas Fúngicas/química , Biblioteca Gênica , Microscopia Confocal/métodos , Fosfolipídeos/química , Folhas de Planta , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Especificidade por Substrato
10.
Biochim Biophys Acta ; 1787(4): 207-20, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19388138

RESUMO

P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Medicina , Preparações Farmacêuticas , Ciência , Adenosina Trifosfatases/química , Animais , Humanos , Modelos Moleculares , Inibidores da Bomba de Prótons , Bombas de Próton/química
11.
Nature ; 450(7172): 1111-4, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075595

RESUMO

A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.


Assuntos
Arabidopsis/enzimologia , Membrana Celular/enzimologia , Bombas de Próton/química , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cristalografia por Raios X , Transporte de Íons , Modelos Moleculares , Fosforilação , Bombas de Próton/metabolismo , Prótons , Eletricidade Estática , Homologia Estrutural de Proteína
12.
J Biol Chem ; 281(50): 38285-92, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17056603

RESUMO

The plant plasma membrane proton pump (H(+)-ATPase) is stimulated by potassium, but it has remained unclear whether potassium is actually transported by the pump or whether it serves other roles. We now show that K(+) is bound to the proton pump at a site involving Asp(617) in the cytoplasmic phosphorylation domain, from where it is unlikely to be transported. Binding of K(+) to this site can induce dephosphorylation of the phosphorylated E(1)P reaction cycle intermediate by a mechanism involving Glu(184) in the conserved TGES motif of the pump actuator domain. Our data identify K(+) as an intrinsic uncoupler of the proton pump and suggest a mechanism for control of the H(+)/ATP coupling ratio. K(+)-induced dephosphorylation of E(1)P may serve regulatory purposes and play a role in negative regulation of the transmembrane electrochemical gradient under cellular conditions where E(1)P is accumulating.


Assuntos
Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Cátions Monovalentes , Membrana Celular/enzimologia , Hidrólise , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , ATPases Translocadoras de Prótons/genética
13.
Biochim Biophys Acta ; 1716(1): 69-76, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16182234

RESUMO

Although several proton-pumping pyrophosphatases (H+-PPases) have been overexpressed in heterologous systems, purification of these recombinant integral membrane proteins in large amounts in order to study their structure-function relationships has proven to be a very difficult task. In this study we report a new method for large-scale production of pure and stable thermophilic H+-PPase from Thermotoga maritima. Following overexpression in yeast, a "Hot-Solve" procedure based on high-temperature solubilization and metal-affinity chromatography was used to obtain a highly purified detergent-solubilized TVP fraction with a yield around 1.5 mg of protein per litre of yeast culture. Electron microscopy showed the monodispersity of the purified protein and single particle analysis provided the first direct evidence of a dimeric structure for H+-PPases. We propose that the method developed could be useful for large-scale purification of other recombinant thermophilic membrane proteins.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/isolamento & purificação , Prótons , Thermotoga maritima/metabolismo , Western Blotting , Membrana Celular/metabolismo , Cromatografia de Afinidade , Detergentes/farmacologia , Dimerização , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Lipídeos/química , Proteínas de Membrana/química , Microscopia Eletrônica , Mutagênese , Níquel/química , Plasmídeos/metabolismo , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Temperatura
14.
J Biol Chem ; 280(23): 21785-90, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15829483

RESUMO

Homology models of plasma membrane H(+)-ATPase (Bukrinsky, J. T., Buch-Pedersen, M. J., Larsen, S., and Palmgren, M. G. (2001) FEBS Lett. 494, 6-10) has pointed to residues in transmembrane segment M4 as being important for proton translocation by P-type proton pumps. To test this model, alanine-scanning mutagenesis was carried out through 12 residues in the M4 of the plant plasma membrane H(+)-ATPase AHA2. An I282A mutation showed apparent reduced H(+) affinity, and this residue was subsequently substituted with all other naturally occurring amino acids by saturation mutagenesis. The ability of mutant enzymes to substitute for the yeast proton pump PMA1 was found to correlate with the size of the side chain rather than its chemical nature. Thus, smaller side chains (Gly, Ala, and Ser) at this position resulted in lower H(+) affinity and lowered levels of H(+) transport in vivo, whereas substitution with side chains of similar and larger size resulted in only minor effects. Substitutions of Ile-282 had only minor effects on ATP affinity and sensitivity toward vanadate, ruling out an indirect effect through changes in the enzyme conformational equilibrium. These results are consistent with a model in which the backbone carbonyl oxygen of Ile-282 contributes directly to proton translocation.


Assuntos
ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions/genética , Membrana Celular/enzimologia , Isoleucina/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/química , Alanina/química , Sequência de Aminoácidos , ATPases Transportadoras de Cálcio/química , Carbono/química , Proteínas de Transporte de Cátions/química , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Isoleucina/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Oxigênio/química , Proteínas de Plantas/química , Plantas/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática , Mutação Puntual , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Vanadatos/farmacologia
15.
J Biol Chem ; 278(20): 17845-51, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12626496

RESUMO

The mechanism of proton pumping by P-type H(+)-ATPases is still unclear. In the plant P-type plasma membrane H(+)-ATPase AHA2, two charged residues, Arg(655) and Asp(684), are conserved in transmembrane segments M5 and M6, respectively, a region that has been shown be contribute to ion coordination in related P-type ATPases. Substitution of Arg(655) with either alanine or aspartate resulted in mutant enzymes exhibiting a significant shift in the P-type ATPase E(1)P-E(2)P conformational equilibrium. The mutant proteins accumulated in the E(1)P conformation, but were capable of conducting proton transport. This points to an important role of Arg(655) in the E(1)P-E(2)P conformational transition. The presence of a carboxylate moiety at position Asp(684) proved essential for coupling between initial proton binding and proton pumping. The finding that the carboxylate side chain of Asp(684) contributes to the proton-binding site and appears to function as an absolutely essential proton acceptor along the proton transport pathway is discussed in the context of a possible proton pumping mechanism of P-type H(+)-ATPases.


Assuntos
Ácido Aspártico/química , Membrana Celular/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arginina/química , Sítios de Ligação , Transporte Biológico , Western Blotting , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Fenômenos Fisiológicos Vegetais , Conformação Proteica , Prótons , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA