Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272516

RESUMO

Foodstuffs, particularly perishable ones such as meat, are frequently discarded once the best-before date has been reached, despite the possibility of their continued suitability for human consumption. The implementation of intelligent packaging has the potential to contribute to a reduction in food wastage by enabling the monitoring of meat freshness during storage time independently of the best-before date. The process of meat spoilage is associated with the formation of specific degradation products, some of which can be potentially utilized as spoilage indicators in intelligent packaging. The aim of the review is to identify degradation products whose concentration correlates with meat shelf life and to evaluate their potential use as spoilage indicators in intelligent packaging. To this end, a comprehensive literature research was conducted to identify the factors influencing meat spoilage and the eight key degradation products (carboxylic acids, biogenic amines, total volatile basic nitrogen, aldehydes, alcohols, ketones, sulfur compounds, and esters) associated with this process. These degradation products were analyzed for their correlation with meat shelf life at different temperatures, atmospheres, and meat types and for their applicability in intelligent packaging. The review provides an overview of these degradation products, comparing their potential to indicate spoilage across different meat types and storage conditions. The findings suggest that while no single degradation product universally indicates spoilage across all meat types and conditions, compounds like carboxylic acids, biogenic amines, and volatile basic nitrogen warrant further investigation. The review elucidates the intricacies inherent in identifying a singular spoilage indicator but underscores the potential of combining specific degradation products to expand the scope of applications in intelligent packaging. Further research (e.g., storage tests in which the concentrations of these substances are specifically examined or research on which indicator substance responds to these degradation products) is recommended to explore these combinations with a view to broadening their applicability.

2.
Biomacromolecules ; 25(3): 2033-2040, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38327086

RESUMO

The global plastic waste problem is pushing for the development of sustainable alternatives, encouraged by stringent regulations combined with increased environmental consciousness. In response, this study presents an industrial-scale proof of concept to produce self-standing, transparent, and flexible bioplastic films, offering a possible solution to plastic pollution and resource valorization. We achieve this by combining amyloid fibrils self-assembled from food waste with methylcellulose and glycerol. Specifically, soy whey and okara, two pivotal protein-rich byproducts of tofu manufacturing, emerge as sustainable and versatile precursors for amyloid fibril formation and bioplastic development. An exhaustive industrial-scale feasibility study involving the transformation of 500 L of soy whey into ∼1 km (27 kg) of bioplastic films underscores the potential of this technology. To extend the practicality of our approach, we further processed a running kilometer of film at the industrial scale into transparent windows for paper-based packaging. The mechanical properties and the water interactions of the novel film are tested and compared with those of commercially used plastic films. By pioneering the large-scale production of biodegradable bioplastics sourced from food byproducts, this work not only simultaneously addresses the dual challenges of plastic pollution and food waste but also practically demonstrates the feasibility of biopolymeric building block valorization for the development of sustainable materials in real-world scenarios.


Assuntos
Alimentos , Eliminação de Resíduos , Biopolímeros , Embalagem de Produtos , Plásticos
3.
Emerg Radiol ; 20(4): 285-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23504333

RESUMO

The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.


Assuntos
Derrame Pleural/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA