Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 982756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330256

RESUMO

Pine cones show functionally highly resilient, hygroscopically actuated opening and closing movements, which are repeatable and function even in millions of years old, coalified cones. Although the functional morphology and biomechanics behind the individual seed scale motions are well understood, the initial opening of the cone, which is often accompanied by an audible cracking noise, is not. We therefore investigated the initial opening events of mature fresh cones of Scots pine (Pinus sylvestris) and their subsequent motion patterns. Using high-speed and time lapse videography, 3D digital image correlation techniques, force measurements, thermographic and chemical-rheological resin analyses, we are able to draw a holistic picture of the initial opening process involving the rupture of resin seals and very fast seed scale motion in the millisecond regime. The rapid cone opening was not accompanied by immediate seed release in our experiments and, therefore, cannot be assigned to ballistochory. As the involved passive hydraulic-elastic processes in cracking are very fine-tuned, we hypothesize that they are under tight mechanical-structural control to ensure an ecologically optimized seed release upon environmental conditions suitable for wind dispersal. In this context, we propose an interplay of humidity and temperature to be the external "drivers" for the initial cone opening, in which resin works as a crucial chemical-mechanical latch system.

2.
Angew Chem Int Ed Engl ; 57(4): 997-1000, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29115719

RESUMO

A simple and high-yielding route to tough polyarylenes of the type poly(meta,meta,para-phenylene) (PmmpP) is developed. PmmpP is tough even in its as-synthesized state which has an intermediate molar mass of Mw ≈60 kg mol-1 and exhibits outstanding mechanical properties at further optimized molecular weight of Mw =96 kg mol-1 , E=0.9 GPa, ϵ=300 %. Statistical copolymers with para,para-spiropyran (SP) are mechanochromic, and the toughness allows mechanochromism to be investigated. Strained samples instantaneously lose color upon force release. DFT calculations show this phenomenon to be caused by the PmmpP matrix that allows build-up of sufficiently large forces to be transduced to SP, and the relatively unstable corresponding merocyanine (MC) form arising from the aromatic co-monomer. MC units covalently incorporated into PmmpP show a drastically reduced half life time of 3.1 s compared to 4.5 h obtained for SP derivatives with common 6-nitro substitution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA