Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chem Sci ; 14(26): 7361-7380, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416721

RESUMO

The novel vacuum-evaporable complex [Fe(pypypyr)2] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.

2.
Small ; 18(52): e2205080, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344458

RESUMO

Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.


Assuntos
Iodetos , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia de Força Atômica
3.
Angew Chem Int Ed Engl ; 60(16): 8832-8838, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33511751

RESUMO

A cobalt(II)-based spin triangle shows a significant spin-electric coupling. [Co3 (pytag)(py)6 Cl3 ]ClO4 ⋅3 py crystallizes in the acentric monoclinic space group P21 . The intra-triangle antiferromagnetic interaction, of the order of ca. -15 cm-1 (H=-JSa Sb ), leads to spin frustration. The two expected energy-degenerate ground doublets are, however, separated by a few wavenumbers, as a consequence of magnetic anisotropy and deviations from threefold symmetry. The Co3  planes of symmetry-related molecules are almost parallel, allowing for the determination of the spin-electric properties of single crystals by EFM-ESR spectroscopy. The spin-electric effect detected when the electric field is applied in the Co3  plane was revealed by a shift in the resonance field. It was quantified as ΔgE /E=0.11×10-9  m V-1 , which in terms of frequency corresponds to approximately 0.3 Hz m V-1 . This value is comparable to what was determined for a Cu3  triangle despite the antiferromagnetic interaction being 20 times larger for the latter.

4.
Inorg Chem ; 59(12): 7966-7979, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32036663

RESUMO

Two polymorphic modifications (1-I and 1-II) of the new spin crossover (SCO) complex [Fe{H2B(pz)(pypz)}2] (pz = pyrazole, pypz = pyridylpyrazole; 1) were prepared and investigated by differential scanning calorimetry (DSC), magnetic measurements, Mößbauer, vibrational, and absorption spectroscopy as well as single-crystal and X-ray powder diffraction. DSC measurements reveal that upon heating the thermodynamically metastable form 1-II to ∼178 °C it transforms into 1-I in an exothermic reaction, which proves that these modifications are related by monotropism. Both forms show thermal SCO with T1/2 values of 390 K (1-II) and 270 K (1-I). An analysis of the crystal structures of 1-II and the corresponding Zn(II) (2) and Co(II) (3) complexes that are isotypic with 1-I reveals that form II consists of dimers coupled by strong intramolecular π···π interactions, which is not the case for 1-I. In agreement with these findings, investigations of thin films of 1, where significant π···π interactions should be absent, reveal SCO behavior similar to that of 1-I. These results underscore the importance of cooperativity for the spin-transition behavior of this class of complexes.

5.
ChemistryOpen ; 8(3): 271-284, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30859054

RESUMO

Four new triphenylamine ligands with different substituents in the para position and their corresponding copper(II) complexes are reported. This study includes their structural, spectroscopic, magnetic, and electrochemical properties. The complexes possess a dinuclear copper(II) paddle-wheel core, a building unit that is also common in metal-organic frameworks. Electrochemical measurements demonstrate that the triphenylamine ligands and the corresponding complexes are susceptible to oxidation, resulting in the formation of stable radical cations. The square-wave voltammograms observed for the complexes are similar to those of the ligands, except for a slight shift in potential. Square-wave voltammetry data show that, in the complexes, these oxidations can be described as individual one-electron processes centered on the coordinated ligands. Spectroelectrochemistry reveals that, during the oxidation of the complexes, no difference can be detected for the spectra of successively oxidized species. For the absorption bands of the oxidized species of the ligands and complexes, only a slight shift is observed. ESR spectra for the chemically oxidized complexes indicate ligand-centered radicals. The copper ions of the paddle-wheel core are strongly antiferromagnetic coupled. DFT calculations for the fully oxidized complexes indicate a very weak ferromagnetic coupling between the copper ions and the ligand radicals, whereas a very weak antiferromagnetic coupling is found among the ligand radicals.

6.
ChemistryOpen ; 8(3): 250, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30868045

RESUMO

Invited for this month's cover picture is the group of Professor Winfried Plass at the Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena (Germany). The cover picture shows a scene illustrating the need to investigate the properties of building blocks for complex systems to enable the basic design of new functional materials. The utilized triphenylamine ligands are constituting parts of the currently investigated "Jena University Magnetic Polymer" (JUMP) series. Read the full text of their Full Paper at 10.1002/open.201800243.

7.
Inorg Chem ; 58(19): 12542-12546, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30925048

RESUMO

Axial coordination in nickel(II) porphyrins has been thoroughly investigated and is well understood. However, isolated five-coordinate nickel(II) porphyrins are still elusive after 50 years of intense research, even though they play a crucial role as intermediates in enzymes and catalysts. Herein we present the first fully stable, thoroughly characterized five-coordinate nickel(II) porphyrin in solution and in the solid state (crystal structure). The spectroscopic properties indicate pure high-spin behavior (S = 1). There are distinct differences in the NMR, UV-vis, and redox behavior compared to those of high-spin six-coordinate [with two axial ligands, such as NiTPPF10·(py)2] and low-spin four-coordinate (NiTPPF10) nickel(II) porphyrins. The title compound, a strapped nickel(II) porphyrin, allows a direct comparison of four-, five-, and six-coordinate nickel(II) porphyrins, depending on the environment. With this reference in hand, previous results were reevaluated, for example, the switching efficiencies and thermodynamic data of nickel(II) porphyrin-based spin switches in solution.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30195186

RESUMO

A new fluorene based fluorogenic chemosensor, 2-[(9H-Fluoren-2-ylmethylene)-amino]-phenol (L), has been designed, synthesized, and characterized by CHN analyses and different spectroscopic methods. This turn-on fluorogenic chemosensor shows high selectivity and sensitivity toward Cu2+ and CN- with low detection limits of 1.54 × 10-9 M and 1.83 × 10-7 M, respectively. The stoichiometry ratio of L-Cu2+ in solution is 1:1, by the method of Job's plot and ESI-MS. The microcrystalline solid product of the chemosensor reaction with copper is characterized as CuL2. The χT value for CuL2 is temperature independent at a value of 0.403 cm3 K mol-1, which is in agreement with a mononuclear copper(II) complex with an isotropic g-value of 2.075. The fluorescence turn-on recognition process for detection of Cu2+ is attributed to the restricted imine isomerization and blocking of intramolecular charge transfer (ICT) quenching process in the analyte-bound sensor. The selectivity of L for Cu2+ is based on the chelation-enhanced fluorescence effect (CHEF) mechanism. Other interfering ions such as Na+, K+, Ca2+, Mg2+, Ag+, Fe2+, Fe3+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, Mn2+, Pb2+ and Al3+, show no change in the fluorescence intensity of L in the presence of Cu2+. Furthermore, the compound L can be used as a fluorescence and colorimetric sensor for selective detection of CN- over a number of other anions based on the nucleophilic addition to the imine CN bond, with consequent hydrogen bond formation and electrostatic interaction of the resulting product with K+. The sensing mechanism for CN- was theoretically supported by DFT calculations.

9.
Chem Commun (Camb) ; 54(92): 12934-12937, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30302454

RESUMO

The trinuclear copper(ii) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods. This complex exhibits a strong antiferromagnetic coupling (J = -298 cm-1) between the copper(ii) ions, mediated by the N-N diazine bridges of the tritopic ligand, leading to a spin-frustrated system. This compound shows a T2 coherence time of 340 ns in frozen pyridine solution, which extends to 591 ns by changing the solvent to pyridine-d5. Hence, the presented compound is a promising candidate as a building block for molecular spintronics.

10.
Inorg Chem ; 57(10): 5767-5781, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29741373

RESUMO

The synthesis of ethoxido-bridged dinuclear oxidovanadium(IV) complexes of the general formula (HNEt3)[(VOL1-3)2(µ-OEt)] (1-3) with the azo dyes 2-(2'-carboxy-5'-X-phenylazo)-4-methylphenol (H2L1, X = H; H2L2, X = NO2) and 2-(2'-carboxy-5'-Br-phenylazo)-2-naphthol (H2L3) as ligands is reported. The ligands differ in the substituents at the phenyl ring to probe their influence on the redox behavior, biological activity, and magnetochemistry of the complexes, for which the results are presented and discussed. All synthesized ligands and vanadium(IV) complexes have been characterized by various physicochemical techniques, namely, elemental analysis, electrospray ionization mass spectrometry, spectroscopic methods (UV/vis and IR), and cyclic voltammetry. X-ray crystallography of 1 and 3 revealed the presence of a twisted arrangement of the edged-shared bridging core unit. In agreement with the distorted nature of the twisted core, antiferromagnetic exchange interactions were observed between the vanadium(IV) centers of the dinuclear complexes with a superexchange mechanism operative. These results have been verified by DFT calculations. The complexes were also screened for their in vitro cytotoxicity against HeLa and HT-29 cancer cell lines. The results indicated that all the synthesized vanadium(IV) complexes (1-3) were cytotoxic in nature and were specific to a particular cell type. Complex 1 was found to be the most potent against HeLa cells (IC50 value 1.92 µM).


Assuntos
Compostos Azo/química , Complexos de Coordenação/química , Magnetismo , Fenantridinas/química , Teoria Quântica , Vanádio/química , Ânions , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Compostos Azo/farmacologia , Compostos Azo/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Células HT29 , Células HeLa , Humanos , Concentração Inibidora 50 , Ligantes , Estrutura Molecular , Oxirredução , Fenantridinas/toxicidade , Vanádio/farmacologia , Vanádio/toxicidade
11.
J Phys Chem Lett ; 9(7): 1491-1496, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510617

RESUMO

Understanding and controlling the spin-crossover properties of molecular complexes can be of particular interest for potential applications in molecular spintronics. Using near-edge X-ray absorption fine structure spectroscopy, we investigated these properties for a new vacuum-evaporable Fe(II) complex, namely [Fe(pypyr(CF3)2)2(phen)] (pypyr = 2-(2'-pyridyl)pyrrolide, phen = 1,10-phenanthroline). We find that the spin-transition temperature, well above room temperature for the bulk compound, is drastically lowered for molecules arranged in thin films. Furthermore, while within the experimentally accessible temperature range (2 K < T < 410 K) the bulk material shows indication of neither light-induced excited spin-state trapping nor soft X-ray-induced excited spin-state trapping, these effects are observed for molecules within thin films up to temperatures around 100 K. Thus, by arranging the molecules into thin films, a nominal low-spin complex is effectively transformed into a spin-crossover complex.

12.
Dalton Trans ; 46(25): 8037-8050, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28604907

RESUMO

Two cobalt(ii) coordination polymers with anionic networks of formulae {(Me2NH2)2[CoCl(ntb)]}n (JUMP-2) and {(Me2NH2)2[Co5(ntb)4(H2O)3(Me2NH)]}n (previously reported as MIL-144 by Livage et al., Microporous Mesoporous Mater., 2012, 157, 37) have been obtained via a solvothermal reaction of cobalt chloride and 4,4',4''-nitrilotribenzoic acid (H3ntb) in DMF employing two differently-sized reactors, while using the same absolute amount of reactants. Structure analysis revealed that JUMP-2 crystallized in the monoclinic space group P21/n and displays a two-dimensional (2D) network, which by topological analysis was characterized as a layered 3-connected hcb net. The topological analysis of MIL-144 revealed a 3,6-connected net with 3,6T80 topology. The magnetic properties of JUMP-2 are indicative of independent single-ion behavior of the tetrahedral cobalt(ii) ions and showed an out-of-phase signal in the alternating-current (ac) magnetic susceptibility below 2.5 K, whereas for MIL-144 an overall antiferromagnetic interaction within the di- and trinuclear secondary building units is observed and no indication for slow magnetization dynamics. The organic cations in both frameworks could successfully be exchanged with inorganic cations under retention of the respective network structure. In the process of exchange, both compounds displayed cation selectivity based on which solvent was utilized for immersing the solids. JUMP-2 shows a preference for europium(iii) ions in DMF, whereas MIL-144 preferentially takes up lithium ions when ethanol is used. The N2 adsorption isotherms were measured before and after exchange and revealed a considerable improvement in the sorption properties of the exchanged samples.

13.
Inorg Chem ; 54(7): 3432-8, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25798820

RESUMO

We present the synthesis and crystal structure of the trinuclear copper complex [Cu3(saltag)(bpy)3]ClO4·3DMF [H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine; bpy = 2,2'-bipyridine]. The complex crystallizes in the trigonal space group R3̅, with all copper ions being crystallographically equivalent. Analysis of the temperature dependence of the magnetic susceptibility shows that the triaminoguanidine ligand mediates very strong antiferromagnetic interactions (JCuCu = -324 cm(-1)). Detailed analysis of the magnetic susceptibility and magnetization data as well as X-band electron spin resonance spectra, all recorded on both powdered samples and single crystals, show indications of neither antisymmetric exchange nor symmetry lowering, thus indicating only a very small splitting of the degenerate S = (1)/2 ground state. These findings are corroborated by density functional theory calculations, which explain both the strong isotropic and negligible antisymmetric exchange interactions.

14.
J Inorg Biochem ; 147: 193-203, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25747149

RESUMO

The Schiff-base ligand (H2salhyhNH3)Cl (1) derived from salicylaldehyde and 6-aminohexanoic acid hydrazide hydrochloride reacts with ammonium metavanadate in methanol solution to yield the dioxidovanadium(V) complex [VO2(salhyhNH3)] (2). The utilized hydrazone ligand contains a flexible and protonated amino side chain. Crystallization from methanol affords complex 2 in the monoclinic space group P21/n, whereas crystallization from a methanol/water mixture 1:1 yields crystals, containing a water molecule of crystallization per two formula units (2⋅1/2H2O), in the orthorhombic space group Pbcn. In both cases the protonated amino group compensates the negative charge on the dioxidovanadium moiety and is involved in an extensive hydrogen bonding network particularly including the oxido groups from neighboring vanadium complexes. The reactivity of complex 2 toward protonation in aqueous solution has been investigated by spectrophotometric titrations and is characterized by two subsequent protonation steps at the hydrazide nitrogen atom of the ligand system and an oxido group leading to the formation of an oxidohydroxidovanadium(V) species with corresponding pKa values of 3.2 and 2.9, respectively. With larger excess of acid the oxidohydroxidovanadium(V) species starts to form the corresponding anhydride. The formation of the anhydride is strongly favored in the presence of methanol. The reaction of complex 2 with hydrogen peroxide in methanol solution leads to the formation of an oxidoperoxidovanadium(V) species, whereas in aqueous solution the addition of one equivalent of acid is required. Complex 2 catalyzes the oxidation of methylphenylsulfane to the corresponding sulfoxide in methanol/dichloromethane mixture using hydrogen peroxide as oxidant at room temperature.


Assuntos
Aminoácidos/química , Complexos de Coordenação/síntese química , Bases de Schiff/química , Compostos de Vanádio/química , Aldeídos/química , Complexos de Coordenação/química
15.
Solid State Nucl Magn Reson ; 40(2): 60-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21601435

RESUMO

Five vanadium complexes as models for biological systems were investigated using (51)V-MAS-NMR spectroscopy. All spectra show an uncommon line shape, which can be attributed to a shorter relaxation time of the satellite transition in contrast to the central one. A method for the reliable analysis of such kind of spectra is presented for the first time and the most important NMR parameters of the investigated complexes (quadrupolar coupling constant C(Q), asymmetry of the EFG tensor η(Q), isotropic chemical shift δ(iso), chemical shift anisotropy δ(σ) and asymmetry of the CSA tensor η(σ)) are presented. These results are of particular importance with respect to the analysis of the (51)V-MAS-NMR spectra of vanadium moieties in biological matrices such as vanadium chloroperoxidase, which show hitherto unexplained low intensity of the satellite sideband pattern.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Vanádio/química , Estatística como Assunto
16.
Solid State Nucl Magn Reson ; 36(4): 192-201, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20045295

RESUMO

The parameters describing the quadrupolar and CSA interactions of 51V solid-state MAS NMR investigations of model complexes mimicking vanadoenzymes as well as vanadium containing catalysts and enzyme complexes are interpreted with respect to the chemical structure. The interpretation is based on the data of 15 vanadium complexes including two new complexes with previously unpublished data and 13 complexes with data previously published by us. Correlations between the chemical structure and the 51V solid-state NMR data of this class of compounds have been established. Especially for the isotropic chemical shift delta(iso) and the chemical shift anisotropy delta(sigma), correlations with specific structural features like the coordination number of the vanadium atom, the number of coordinating nitrogens, the number of oxygen atoms and the chemical surrounding of the complex could be established for these compounds. Moreover, quantitative correlations between the solid-state NMR parameters and specific bond angles and bond lengths have been obtained. Our results can be of particular interest for future investigations concerning the structure and the mode of action of related vanadoenzymes and vanadate protein assemblies, including the use of vanadate adducts as transition state analogs for phosphate metabolizing systems.


Assuntos
Biocatálise , Metaloproteínas/química , Vanádio/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Metaloproteínas/metabolismo , Modelos Moleculares , Conformação Molecular , Peroxidases/química , Peroxidases/metabolismo , Fosfatos/metabolismo , Teoria Quântica , Vanadatos/química , Vanadatos/metabolismo , Vanádio/metabolismo
17.
Chemistry ; 15(5): 1261-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19101969

RESUMO

The reaction of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside (HL) with the metal salts Cu(ClO(4))(2)6 H(2)O and Ni(NO(3))(2)6 H(2)O affords via self-assembly a tetranuclear mu(4)-hydroxido bridged copper(II) complex [(mu(4)-OH)Cu(4)(L)(4)(MeOH)(3)(H(2)O)](ClO(4))(3) (1) and a trinuclear alcoholate bridged nickel(II) complex [Ni(3)(L)(5)(HL)]NO(3) (2), respectively. Both complexes crystallize in the acentric space group P2(1). The X-ray crystal structure reveals the rare (mu(4)-OH)Cu(4)O(4) core for complex 1 which is mu(2)-alcoholate bridged. The copper(II) ions possess a distorted square-pyramidal geometry with an [NO(4)] donor set. The core is stabilized by hydrogen bonding between the coordinating amino group of the glucose backbone and the benzylidene protected oxygen atom O4 of a neighboring {Cu(L)} fragment as hydrogen-bond acceptor. For complex 2 an [N(4)O(2)] donor set is observed at the nickel(II) ions with a distorted octahedral geometry. The trinuclear isosceles Ni(3) core is bridged by mu(3)-alcoholate O3 oxygen atoms of two glucose ligands. The two short edges are capped by mu(2)-alcoholate O3 oxygen atoms of the two ligands coordinated at the nickel(II) ion at the vertex of these two edges. Along the elongated edge of the triangle a strong hydrogen bond (244 pm) between the O3 oxygen atoms of ligands coordinating at the two relevant nickel(II) ions is observed. The coordinating amino groups of the these two glucose ligands are involved in additional hydrogen bonds with O4 oxygen atoms of adjacent ligands further stabilizing the trinuclear core. The carbohydrate backbones in all cases adopt the stable (4)C(1) chair conformation and exhibit the rare chitosan-like trans-2,3-chelation. Temperature dependent magnetic measurements indicate an overall antiferromagnetic behavior for complex 1 with J(1)=-260 and J(2)=-205 cm(-1) (g=2.122). Compound 2 is the first ferromagnetically coupled trinuclear nickel(II) complex with J(A)=16.4 and J(B)=11.0 cm(-1) (g(1,2)=2.183, g(3)=2.247). For the high-spin nickel(II) centers a zero-field splitting of D(1,2)=3.7 cm(-1) and D(3)=1.8 cm(-1) is observed. The S=3 ground state of complex 2 is consistent with magnetization measurements at low temperatures.


Assuntos
Carboidratos/química , Carboidratos/síntese química , Cobre/química , Níquel/química , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Magnetismo , Estrutura Molecular
18.
Solid State Nucl Magn Reson ; 34(1-2): 52-67, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18342494

RESUMO

Three cis-dioxovanadium(V) complexes with similar N-salicylidenehydrazide ligands modeling hydrogen bonding interactions of vanadate relevant for vanadium haloperoxidases are studied by (51)V solid-state NMR spectroscopy. Their parameters describing the quadrupolar and chemical shift anisotropy interactions (quadrupolar coupling constant C(Q), asymmetry of the quadrupolar tensor eta(Q), isotropic chemical shift delta(iso), chemical shift anisotropy delta(sigma), asymmetry of the chemical shift tensor eta(sigma) and the Euler angles alpha, beta and gamma) are determined both experimentally and theoretically using DFT methods. A comparative study of different methods to determine the NMR parameters by numerical simulation of the spectra is presented. Detailed theoretical investigations on the DFT level using various basis sets and structural models show that by useful choice of the methodology, the calculated parameters agree to the experimental ones in a very good manner.


Assuntos
Peroxidases/química , Teoria Quântica , Automação , Bases de Dados de Proteínas , Eletricidade , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes , Vanádio/química
19.
Chemistry ; 14(5): 1571-83, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18058956

RESUMO

A series of bimetallic zinc(II) and nickel(II) complexes based on the novel dinucleating unsymmetric double-Schiff-base ligand benzoic acid [1-(3-{[2-(bispyridin-2-ylmethylamino)ethylimino]methyl}-2-hydroxy-5-methylphenyl)methylidene]hydrazide (H(2)bpampbh) has been synthesized and structurally characterized. The metal centers reside in two entirely different binding pockets provided by the ligand H(2)bpampbh, a planar tridentate [ONO] and a pentadentate [ON(4)] compartment. The utilized ligand H(2)bpampbh has been synthesized by condensation of the single-Schiff-base proligand Hbpahmb with benzoic acid hydrazide. The reaction of H(2)bpampbh with two equivalents of either zinc(II) or nickel(II) acetate yields the homobimetallic complexes [Zn(2)(bpampbh)(mu,eta(1)-OAc)(eta(1)-OAc)] (ZnZn) and [Ni(2)(bpampbh)(mu-H(2)O)(eta(1)-OAc)(H(2)O)](OAc) (NiNi), respectively. Simultaneous presence of one equivalent zinc(II) and one equivalent nickel(II) acetate results in the directed formation of the heterobimetallic complex [NiZn(bpampbh)(mu,eta(1)-OAc)(eta(1)-OAc)] (NiZn) with a selective binding of the nickel ions in the pentadentate ligand compartment. In addition, two homobimetallic azide-bridged complexes [Ni(2)(bpampbh)(mu,eta(1)-N(3))]ClO(4) (NiNi(N(3))) and [Ni(2)(bpampbh)(mu,eta(1)-N(3))(MeOH)(2)](ClO(4))(0.5)(N(3))(0.5) (NiNi(N(3))(MeOH)(2)) were synthesized. In all complexes, the metal ions residing in the pentadentate compartment adopt a distorted octahedral coordination geometry, whereas the metal centers placed in the tridentate compartment vary in coordination number and geometry from square-planar (NiNi(N(3))) and square-pyramidal (ZnZn and NiZn), to octahedral (NiNi and NiNi(N(3))(MeOH)(2)). In the case of complex NiNi(N(3)) this leads to a mixed-spin homodinuclear nickel(II) complex. All compounds have been characterized by means of mass spectrometry as well as IR and UV/Vis spectroscopies. Magnetic susceptibility measurements show significant zero-field splitting for the nickel-containing complexes (D=2.9 for NiZn, 2.2 for NiNi(N(3)), and 0.8 cm(-1) for NiNi) and additionally a weak antiferromagnetic coupling (J=-1.4 cm(-1)) in case of NiNi. Electrochemical measurements and photometric titrations reveal a strong Lewis acidity of the metal center placed in the tridentate binding compartment towards external donor molecules. A significant superoxide dismutase reactivity against superoxide radicals was found for complex NiNi.


Assuntos
Benzoatos/química , Níquel/química , Compostos Organometálicos/síntese química , Bases de Schiff/química , Zinco/química , Sítios de Ligação , Eletroquímica , Radicais Livres/química , Radicais Livres/metabolismo , Ligantes , Magnetismo , Estrutura Molecular , Espectrofotometria , Estereoisomerismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxidos/química , Superóxidos/metabolismo , Temperatura
20.
Chemistry ; 13(26): 7305-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17577912

RESUMO

A series of novel tri- and pentanuclear complexes composed of dinuclear LM(2) units (M=Co, Ni, Zn; L=24-membered macrocyclic hexaazadithiophenolate ligand) and ferrocenecarboxylate ([CpFeC(5)H(4)CO(2)](-)) or 1,1'-ferrocenedicarboxylate ([Fe(C(5)H(4)CO(2))(2)](2-)) groups is reported. The complexes [LM(II) (2)(O(2)CC(5)H(4)FeCp)](+) (M=Co (6), Ni (7), Zn (8)) and [(LM(II) (2))(2)(O(2)CC(5)H(4))(2)Fe](2+) (M=Co (9), Ni (10)) have been prepared by substitution reactions from labile [LM(II) (2)L'](+) precursors (L'=Cl, OAc) and the respective ferrocenecarboxylate anions in methanol. Mixed-valent [(LCo(II)Co(III))(2)(O(2)CC(5)H(4))(2)Fe](4+) (11) was prepared by oxidation of 9 with bromine. Complexes 7[BPh(4)], 8[BPh(4)], 9[BPh(4)](2), 10[BPh(4)](2), and 11[ClO(4)](4) have been characterized by X-ray crystallography; showing that the ferrocenyl carboxylates act as bidentate (7, 8) or bis-bidentate (9-11) bridging ligands towards one or two bioctahedral LM(2) subunits, respectively. The structures are retained in solution as indicated by NMR spectroscopic studies on the diamagnetic Zn(2)Fe complex 8[ClO(4)]. Electrochemical studies reveal significant anodic potential shifts for the oxidation potential of the ferrocenyl moieties upon complexation and the magnitude of the potential shift appears to correlate with the charge of the LM(2) subunits. This is qualitatively explained in terms of destabilizing electrostatic (Coulomb) interactions between the M(2+) ions of the LM(2) unit and the proximate ferrocenium fragment. An analysis of the temperature-dependent magnetic susceptibility data for 10[BPh(4)](2) shows the presence of weak ferromagnetic magnetic exchange interactions between the Ni(II) ions in the LNi(2) units. The exchange coupling across the ferrocenedicarboxylate bridge is negligible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA