RESUMO
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert their functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
RESUMO
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
RESUMO
microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.
Assuntos
Ciclo Celular , MicroRNAs , RNA Longo não Codificante , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Ciclo Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Assuntos
Nematospiroides dubius , Trichostrongyloidea , Camundongos , Animais , Interações Hospedeiro-Parasita/fisiologia , Nematospiroides dubius/genéticaRESUMO
Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.
Assuntos
MicroRNAs , Complexo de Inativação Induzido por RNA , Animais , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peso Molecular , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismoRESUMO
Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.
Assuntos
Vesículas Extracelulares , Helmintos , Animais , Humanos , Vesículas Extracelulares/fisiologia , Reprodutibilidade dos Testes , MamíferosRESUMO
Gastrointestinal nematodes are a diverse class of pathogens that colonise a quarter of the world's human population and nearly all grazing livestock. These macroparasites establish, and some migrate, within host gastrointestinal niches during their life cycles and release molecules that condition the host mucosa to enable chronic infections. Understanding how helminths do this, and defining the molecules and mechanisms involved in host modulation, holds promise for novel strategies of anthelmintics and vaccines, as well as new knowledge of immune regulation and tissue repair. Yet the size and complexity of these multicellular parasites, coupled with the reliance on hosts to maintain their life cycles, present obstacles to interrogate how they interact with the gastric and intestinal epithelium, stroma and immune cells during infection, and also to develop protocols to genetically modify these parasites. Gastrointestinal organoids have transformed research on gastric and gut physiology during homeostasis and disease, including investigations on host-pathogen interactions with viruses, bacteria, protozoa and more recently, parasitic nematodes. Here we outline applications and important considerations for the best use of organoids to study gastrointestinal nematode development and interactions with their hosts. The careful use of different organoid culture configurations in order to achieve a closer replication of the in vivo infection context will lead not only to new knowledge on gastrointestinal nematode infection biology, but also towards the replication of their life cycles in vitro, and the development of valuable experimental tools such as genetically modified parasites.
Assuntos
Gastroenteropatias , Nematoides , Infecções por Nematoides , Parasitos , Animais , Interações Hospedeiro-Parasita , Humanos , OrganoidesRESUMO
Extracellular vesicles (EVs) mediate the transfer of molecules between cells and play diverse roles in host-pathogen interactions. Malaria is an important disease caused by intracellular Plasmodium species that invade red blood cells and these red blood cells release EVs. The EVs from infected cells have diverse functions in the disease and an obstacle in understanding how they exert their functions is that multiple EV types exist. In this issue of EMBO reports, Abou Karam and colleagues use sophisticated biophysical techniques to isolate and characterize two EV subpopulations produced by red blood cells infected with Plasmodium falciparum (Abou Karam et al, 2022). The authors show that these EV subpopulations have distinct sizes, protein content, membrane packing, and fusion capabilities, suggesting that EV subpopulations from infected cells could target different cell types and subcellular locations. This work underscores the concept that understanding EV heterogeneity will go hand in hand with understanding EV functions.
Assuntos
Vesículas Extracelulares , Malária , Transporte Biológico , Eritrócitos , Vesículas Extracelulares/metabolismo , Humanos , Plasmodium falciparumRESUMO
Drug-induced liver injury (DILI) results in over 100 000 hospital attendances per year in the UK alone and is a leading cause for the post-marketing withdrawal of new drugs, leading to significant financial losses. MicroRNA-122 (miR-122) has been proposed as a sensitive DILI marker although no commercial applications are available yet. Extracellular blood microRNAs (miRNAs) are promising clinical biomarkers but their measurement at point of care remains time-consuming, technically challenging, and expensive. For circulating miRNA to have an impact on healthcare, a key challenge to overcome is the development of rapid and reliable low-cost sample preparation. There is an acknowledged issue with miRNA stability in the presence of hemolysis and platelet activation, and no solution has been demonstrated for fast and robust extraction at the site of blood draw. Here, we report a novel microfluidic platform for the extraction of circulating miR-122 from blood enabled by a vertical approach and gravity-based bubble mixing. The performance of this disposable cartridge was verified by standard quantitative polymerase chain reaction analysis on extracted miR-122. The cartridge performed equivalently or better than standard bench extraction kits. The extraction cartridge was combined with electrochemical impedance spectroscopy to detect miR-122 as an initial proof-of-concept toward an application in point-of-care detection. This platform enables the standardization of sample preparation and the detection of miRNAs at the point of blood draw and in resource limited settings and could aid the introduction of miRNA-based assays into routine clinical practice.
RESUMO
In their recent Nature paper, Garcia-Martin et al. show that sequences within a microRNA influence how much of that microRNA is sent to another cell through extracellular vesicles. This supports a growing body of data demonstrating that cells use RNA to talk, but we know much less about how they listen.
Assuntos
MicroRNAs , Vesículas Transportadoras/metabolismo , Comunicação Celular , MicroRNAs/metabolismoRESUMO
The gut microbiota plays an integral role in human health and its dysbiosis is associated with many chronic diseases. There are still large gaps in understanding the host and environmental factors that directly regulate the gut microbiota, and few effective strategies exist to modulate the microbiota in therapeutic applications. Recent reports suggest that certain microRNAs (miRNAs) released by mammalian cells can regulate bacterial gene expression to influence the microbiome composition and propose extracellular vesicles as one natural mechanism for miRNA transport in the gut. These new findings interface with a burgeoning body of data showing that miRNAs are present in a stable form in extracellular environments and can mediate cell-to-cell communication in mammals. Here, we review the literature on RNA-mediated modulation of the microbiome to bring cross-disciplinary perspective to this new type of interaction and its potential implications in biology and medicine.
RESUMO
Extracellular vesicles (EVs) have emerged as a ubiquitous component of helminth excretory-secretory products that can deliver parasite molecules to host cells to elicit immunomodulatory effects. RNAs are one type of cargo molecule that can underpin EV functions, hence there is extensive interest in characterising the RNAs that are present in EVs from different helminth species. Here we outline methods for identifying all of the small RNAs (sRNA) in helminth EVs and address how different methodologies may influence the sRNAs detected. We show that different EV purification methods introduce relatively little variation in the sRNAs that are detected, and that different RNA library preparation methods yielded larger differences. We compared the EV sRNAs in the gastrointestinal nematode Heligmosomoides bakeri with those in EVs from the distantly related gastrointestinal nematode Trichuris muris, and found that many of the sRNAs in both organisms derive from repetitive elements or intergenic regions. However, only in H. bakeri do these RNAs contain a 5' triphosphate, and Guanine (G) starting nucleotide, consistent with their biogenesis by RNA-dependent RNA polymerases (RdRPs). Distinct microRNA (miRNA) families are carried in EVs from each parasite, with H. bakeri EVs specific for miR-71, miR-49, miR-63, miR-259 and miR-240 gene families, and T. muris EVs specific for miR-1, miR-1822 and miR-252, and enriched for miR-59, miR-72 and miR-44 families, with the miR-9, miR-10, miR-80 and let-7 families abundant in both. We found a larger proportion of miRNA reads derive from the mouse host in T. muris EVs, compared with H. bakeri EVs. Our report underscores potential biases in the sRNAs sequenced based on library preparation methods, suggests specific nematode lineages have evolved distinct sRNA synthesis/export pathways, and highlights specific differences in EV miRNAs from H. bakeri and T. muris that may underpin functional adaptation to their host niches.
Assuntos
Vesículas Extracelulares/metabolismo , MicroRNAs , RNA de Helmintos , RNA Interferente Pequeno , Trichuris/metabolismo , Animais , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , RNA de Helmintos/isolamento & purificação , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismoRESUMO
Many organisms exchange small RNAs (sRNAs) during their interactions, that can target or bolster defense strategies in host-pathogen systems. Current sRNA-Seq technology can determine the sRNAs present in any symbiotic system, but there are very few bioinformatic tools available to interpret the results. We show that one of the biggest challenges comes from sequences that map equally well to the genomes of both interacting organisms. This arises due to the small size of the sRNAs compared to large genomes, and because a large portion of sequenced sRNAs come from genomic regions that encode highly conserved miRNAs, rRNAs or tRNAs. Here, we present strategies to disentangle sRNA-Seq data from samples of communicating organisms, developed using diverse plant and animal species that are known to receive or exchange RNA with their symbionts. We show that sequence assembly, both de novo and genome-guided, can be used for these sRNA-Seq data, greatly reducing the ambiguity of mapping reads. Even confidently mapped sequences can be misleading, so we further demonstrate the use of differential expression strategies to determine true parasite-derived sRNAs within host cells. We validate our methods on new experiments designed to probe the nature of the extracellular vesicle sRNAs from the parasitic nematode Heligmosomoides bakeri that get into mouse intestinal epithelial cells.
Assuntos
Interações Hospedeiro-Patógeno/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Simbiose/genética , Animais , Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/genética , Biologia Computacional , Genoma Bacteriano/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , MicroRNAs/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de RNARESUMO
BACKGROUND: The release of small non-coding RNAs (sRNAs) has been reported in parasitic nematodes, trematodes and cestodes of medical and veterinary importance. However, little is known regarding the diversity and composition of sRNAs released by different lifecycle stages and the portion of sRNAs that persist in host tissues during filarial infection. This information is relevant to understanding potential roles of sRNAs in parasite-to-host communication, as well as to inform on the location within the host and time point at which they can be detected. METHODOLOGY AND PRINCIPAL FINDINGS: We have used small RNA (sRNA) sequencing analysis to identify sRNAs in replicate samples of the excretory-secretory (ES) products of developmental stages of the filarial nematode Litomosoides sigmodontis in vitro and compare this to the parasite-derived sRNA detected in host tissues. We show that all L. sigmodontis developmental stages release RNAs in vitro, including ribosomal RNA fragments, 5'-derived tRNA fragments (5'-tRFs) and, to a lesser extent, microRNAs (miRNAs). The gravid adult females (gAF) produce the largest diversity and abundance of miRNAs in the ES compared to the adult males or microfilariae. Analysis of sRNAs detected in serum and macrophages from infected animals reveals that parasite miRNAs are preferentially detected in vivo, compared to their low levels in the ES products, and identifies miR-92-3p and miR-71-5p as L. sigmodontis miRNAs that are stably detected in host cells in vivo. CONCLUSIONS: Our results suggest that gravid adult female worms secrete the largest diversity of extracellular sRNAs compared to adult males or microfilariae. We further show differences in the parasite sRNA biotype distribution detected in vitro versus in vivo. We identify macrophages as one reservoir for parasite sRNA during infection, and confirm the presence of parasite miRNAs and tRNAs in host serum during patent infection.
Assuntos
Filariose/genética , Filarioidea/genética , Filarioidea/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Pequeno RNA não Traduzido/sangue , Animais , Líquidos Corporais , Feminino , Filariose/parasitologia , Estágios do Ciclo de Vida , Macrófagos , Masculino , Camundongos , MicroRNAs/genética , Microfilárias , RNA Ribossômico , RNA de Transferência , Análise de SequênciaRESUMO
Hypoxia is a ubiquitous feature of cancers, encouraging glycolytic metabolism, proliferation, and resistance to therapy. Nonetheless, hypoxia is a poorly defined term with confounding features described in the literature. Redox biology provides an important link between the external cellular microenvironment and the cell's response to changing oxygen pressures. In this paper, we demonstrate a correlation between intracellular redox potential (measured using optical nanosensors) and the concentrations of microRNAs (miRNAs) involved in the cell's response to changes in oxygen pressure. The correlations were established using surprisal analysis (an approach derived from thermodynamics and information theory). We found that measured redox potential changes reflect changes in the free energy computed by surprisal analysis of miRNAs. Furthermore, surprisal analysis identified groups of miRNAs, functionally related to changes in proliferation and metastatic potential that played the most significant role in the cell's response to changing oxygen pressure.
Assuntos
Hipóxia Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Hipóxia/metabolismo , Células MCF-7/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Termodinâmica , Microambiente Tumoral/genéticaRESUMO
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Assuntos
Células Eucarióticas/imunologia , Células Eucarióticas/virologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Interferência de RNA , Pequeno RNA não Traduzido/metabolismoRESUMO
Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this.
Assuntos
Proteínas Argonautas/genética , Evolução Molecular , Heligmosomatoidea/genética , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/genética , Heligmosomatoidea/patogenicidade , Humanos , FilogeniaRESUMO
Post-transcriptional RNA modifications have been found to be present in a wide variety of organisms and in different types of RNA. Nucleoside modifications are interesting due to their already known roles in translation fidelity, enzyme recognition, disease progression, and RNA stability. In addition, the abundance of modified nucleosides fluctuates based on growth phase, external stress, or possibly other factors not yet explored. With modifications ever changing, a method to determine absolute quantities for multiple nucleoside modifications is required. Here, we report metabolic isotope labeling to produce isotopically labeled internal standards in bacteria and yeast. These can be used for the quantification of 26 different modified nucleosides. We explain in detail how these internal standards are produced and show their mass spectrometric characterization. We apply our internal standards and quantify the modification content of transfer RNA (tRNA) from bacteria and various eukaryotes. We can show that the origin of the internal standard has no impact on the quantification result. Furthermore, we use our internal standard for the quantification of modified nucleosides in mouse tissue messenger RNA (mRNA), where we find different modification profiles in liver and brain tissue.