RESUMO
Dr. David Garbers made many impactful contributions to science and vastly improved our understanding of sperm biology. In this review, we focus on his identification of a key role for the second messenger cAMP in mammalian sperm. As a graduate student David discovered that sperm motility, which is essential for sperm to fertilize the egg, is under the control of the (at the time) recently identified, prototypical second messenger cAMP. Fast-forwarding to the present, agents which turn off sperm's ability to generate cAMP and block sperm motility are being investigated as potential nonhormonal contraceptives for men and women. Should these efforts prove successful, Dave's discoveries will prove to be the spark which ignited a revolution in human health.
Assuntos
AMP Cíclico , Motilidade dos Espermatozoides , Espermatozoides , Animais , Feminino , Humanos , Masculino , AMP Cíclico/história , AMP Cíclico/metabolismo , História do Século XX , História do Século XXI , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismoRESUMO
Because nearly half of pregnancies worldwide are unintended, available contraceptive methods are inadequate. Moreover, due to the striking imbalance between contraceptive options available for men compared to the myriad of options available to women, there is an urgent need for new methods of contraception for men. This review summarizes ongoing efforts to develop male contraceptives highlighting the unique aspects particular to on-demand male contraception, where a man takes a contraceptive only when and as often as needed.
Assuntos
Anticoncepção , Anticoncepcionais Masculinos , Humanos , Masculino , Anticoncepção/métodos , Feminino , GravidezRESUMO
Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon re-addition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metabolites.
RESUMO
Mammalian sperm require sufficient energy to support motility and capacitation for successful fertilization. Previous studies cataloging the changes to metabolism in sperm explored ejaculated human sperm or dormant mouse sperm surgically extracted from the cauda epididymis. Due to the differences in methods of collection, it remains unclear whether any observed differences between mouse and human sperm represent species differences or reflect the distinct maturation states of the sperm under study. Here we compare the metabolic changes during capacitation of epididymal versus ejaculated mouse sperm and relate these changes to ejaculated human sperm. Using extracellular flux analysis and targeted metabolic profiling, we show that capacitation-induced changes lead to increased flux through both glycolysis and oxidative phosphorylation in mouse and human sperm. Ejaculation leads to greater flexibility in the ability to use different carbon sources. While epididymal sperm are dependent upon glucose, ejaculated mouse and human sperm gain the ability to also leverage non-glycolytic energy sources such as pyruvate and citrate.
RESUMO
Dinoflagellates of the family Kryptoperidiniaceae, known as "dinotoms", possess diatom-derived endosymbionts and contain individuals at three successive evolutionary stages: a transiently maintained kleptoplastic stage; a stage containing multiple permanently maintained diatom endosymbionts; and a further permanent stage containing a single diatom endosymbiont. Kleptoplastic dinotoms were discovered only recently, in Durinskia capensis; until now it has not been investigated kleptoplastic behavior and the metabolic and genetic integration of host and prey. Here, we show D. capensis is able to use various diatom species as kleptoplastids and exhibits different photosynthetic capacities depending on the diatom species. This is in contrast with the prey diatoms in their free-living stage, as there are no differences in their photosynthetic capacities. Complete photosynthesis including both the light reactions and the Calvin cycle remain active only when D. capensis feeds on its habitual associate, the "essential" diatom Nitzschia captiva. The organelles of another edible diatom, N. inconspicua, are preserved intact after ingestion by D. capensis and expresses the psbC gene of the photosynthetic light reaction, while RuBisCO gene expression is lost. Our results indicate that edible but non-essential, "supplemental" diatoms are used by D. capensis for producing ATP and NADPH, but not for carbon fixation. D. capensis has established a species-specifically designed metabolic system allowing carbon fixation to be performed only by its essential diatoms. The ability of D. capensis to ingest supplemental diatoms as kleptoplastids may be a flexible ecological strategy, to use these diatoms as "emergency supplies" while no essential diatoms are available.
Assuntos
Diatomáceas , Dinoflagellida , Humanos , Dinoflagellida/genética , Dinoflagellida/metabolismo , Simbiose/genética , Fotossíntese , Evolução Biológica , Diatomáceas/genéticaRESUMO
Targeted disruption of the soluble adenylyl cyclase (ADCY10; sAC) gene results in male-specific sterility without affecting spermatogenesis, mating behavior, or spermatozoa morphology and count; however, it dramatically impairs sperm motility and prevents capacitation. These phenotypes were identified in sperm from sAC null mice surgically extracted from the epididymis and studied in vitro. Epididymal sperm are dormant, and never exposed to physiological activators in semen or the female reproductive tract. To study sAC null sperm under conditions which more closely resemble natural fertilization, we explored phenotypes of ejaculated sAC null sperm in vivo post-coitally as well as ex vivo, collected from the female reproductive tract. Ex vivo ejaculated sAC null sperm behaved similarly to epididymal sAC null sperm, except with respect to the physiologically induced acrosome reaction. These studies suggest there is a sAC-independent regulation of acrosome responsiveness induced upon ejaculation or exposure to factors in the female reproductive tract. We also studied the behavior of sAC null sperm in vivo post-coitally by taking advantage of transgenes with fluorescently labelled sperm. Transgenes expressing GFP in the acrosome and DsRed2 in the mitochondria located in the midpiece of sperm (DsRed2/Acr3-EGFP) allow visualization of sperm migration through the female reproductive tract after copulation. As previously reported, sperm from wild type (WT) double transgenic mice migrated from the uterus through the uterotubular junction (UTJ) into the oviduct within an hour post-copulation. In contrast, sperm from sAC null double transgenic mice were only found in the uterus. There were no sAC null sperm in the oviduct, even 8 h after copulation. These results demonstrate that sAC KO males are infertile because their sperm do not migrate to the fertilization site.
RESUMO
Male mice lacking the androgen receptor (AR) in pancreatic ß cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in ß cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male ß cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male ß cells.
Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Masculino , Camundongos , Humanos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Adenilil Ciclases/metabolismo , Receptores Androgênicos/metabolismo , Insulina/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Testosterona , Ilhotas Pancreáticas/metabolismo , Fragmentos de Peptídeos/metabolismo , Mamíferos/metabolismoRESUMO
Free energy perturbation is a computational technique that can be used to predict how small changes to an inhibitor structure will affect the binding free energy to its target. In this paper, we describe the utility of free energy perturbation with FEP+ in the hit-to-lead stage of a drug discovery project targeting soluble adenyl cyclase. The project was structurally enabled by X-ray crystallography throughout. We employed free energy perturbation to first scaffold hop to a preferable chemotype and then optimize the binding affinity to sub-nanomolar levels while retaining druglike properties. The results illustrate that effective use of free energy perturbation can enable a drug discovery campaign to progress rapidly from hit to lead, facilitating proof-of-concept studies that enable target validation.
Assuntos
Adenilil Ciclases , Descoberta de Drogas , Termodinâmica , EntropiaRESUMO
Purpose: We investigated whether a clinically used carbonic anhydrase inhibitor (CAIs) can modulate intraocular pressure (IOP) through soluble adenylyl cyclase (sAC) signaling. Methods: IOP was measured 1 h after topical treatment with brinzolamide, a topically applied and clinically used CAIs, using direct cannulation of the anterior chamber in sAC knockout (KO) mice or C57BL/6J mice in the presence or absence of the sAC inhibitor (TDI-10229). Results: Mice treated with the sAC inhibitor TDI-10229 had elevated IOP. CAIs treatment significantly decreased increased intraocular pressure (IOP) in wild-type, sAC KO mice, as well as TDI-10229-treated mice. Conclusions: Inhibiting carbonic anhydrase reduces IOP independently from sAC in mice. Our studies suggest that the signaling cascade by which brinzolamide regulates IOP does not involve sAC.
Assuntos
Glaucoma , Pressão Intraocular , Animais , Camundongos , Inibidores da Anidrase Carbônica , Adenilil Ciclases/uso terapêutico , Camundongos Endogâmicos C57BL , Glaucoma/tratamento farmacológicoRESUMO
[This corrects the article DOI: 10.3389/fphys.2022.1013845.].
RESUMO
Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed. Soluble adenylyl cyclase (sAC) is essential for sperm motility and maturation. We show a single dose of a safe, acutely-acting sAC inhibitor with long residence time renders male mice temporarily infertile. Mice exhibit normal mating behavior, and full fertility returns the next day. These studies define sAC inhibitors as leads for on-demand contraceptives for men, and they provide in vivo proof-of-concept for previously untested paradigms in contraception; on-demand contraception after just a single dose and pharmacological contraception for men.
Assuntos
Inibidores de Adenilil Ciclases , Adenilil Ciclases , Anticoncepcionais Masculinos , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Anticoncepção , Anticoncepcionais Masculinos/farmacologia , Sêmen , Motilidade dos Espermatozoides , Inibidores de Adenilil Ciclases/farmacologiaRESUMO
Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization. Pharmacologic evaluation of existing sAC inhibitors for utility as on-demand, nonhormonal male contraceptives suggested that both high intrinsic potency, fast on and slow dissociation rates are essential design elements for successful male contraceptive applications. During the course of the medicinal chemistry campaign described here, we identified sAC inhibitors that fulfill these criteria and are suitable for in vivo evaluation of diverse sAC pharmacology.
Assuntos
Adenilil Ciclases , Motilidade dos Espermatozoides , Animais , Masculino , Adenilil Ciclases/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Oócitos/metabolismo , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Anticoncepcionais Masculinos/química , Anticoncepcionais Masculinos/farmacologiaRESUMO
In mammalian cells, 10 different adenylyl cyclases produce the ubiquitous second messenger, cyclic adenosine monophosphate (cAMP). Amongst these cAMP-generating enzymes, bicarbonate (HCO3 -)-regulated soluble adenylyl cyclase (sAC; ADCY10) is uniquely essential in sperm for reproduction. For this reason, sAC has been proposed as a potential therapeutic target for non-hormonal contraceptives for men. Here, we describe key sAC-focused in vitro assays to identify and characterize sAC inhibitors for therapeutic use. The affinity and binding kinetics of an inhibitor can greatly influence in vivo efficacy, therefore, we developed improved assays for assessing these efficacy defining features.
RESUMO
In humans, the prototypical second messenger cyclic AMP is produced by 10 adenylyl cyclase isoforms, which are divided into two classes. Nine isoforms are G protein coupled transmembrane adenylyl cyclases (tmACs; ADCY1-9) and the 10th is the bicarbonate regulated soluble adenylyl cyclase (sAC; ADCY10). This review details why sAC is uniquely druggable and outlines ways to target sAC for novel forms of male and female contraception.
RESUMO
Iron is a cofactor of photosystems and electron carriers in the photosynthetic electron transport chain. Low concentrations of dissolved iron are, therefore, the predominant factor that limits the growth of phototrophs in large parts of the open sea like the Southern Ocean and the North Pacific, resulting in "high nutrient-low chlorophyll" (HNLC) areas. Diatoms are among the most abundant microalgae in HNLC zones. Besides efficient iron uptake mechanisms, efficient photoprotection might be one of the key traits enabling them to outcompete other algae in HNLC regions. In diatoms, Lhcx proteins play a crucial role in one of the main photoprotective mechanisms, the energy-dependent fluorescence quenching (qE). The expression of Lhcx proteins is strongly influenced by various environmental triggers. We show that Lhcx2 responds specifically and in a very sensitive manner to iron limitation in the diatom Phaeodactylum tricornutum on the same timescale as the known iron-regulated genes ISIP1 and CCHH11. By comparing Lhcx2 knockout lines with wild type cells, we reveal that a strongly increased qE under iron limitation is based on the upregulation of Lhcx2. Other observed iron acclimation phenotypes in P. tricornutum include a massively reduced chlorophyll a content/cell, a changed ratio of light harvesting and photoprotective pigments per chlorophyll a, a decreased amount of photosystem II and photosystem I cores, an increased functional photosystem II absorption cross section, and decoupled antenna complexes. H2O2 formation at photosystem I induced by high light is lowered in iron-limited cells, while the amount of total reactive oxygen species is rather increased. Our data indicate a possible reduction in singlet oxygen by Lhcx2-based qE, while the other iron acclimation phenotype parameters monitored are not affected by the amount of Lhcx2 and qE.
RESUMO
Photosynthetic organisms in nature often experience light fluctuations. While low light conditions limit the energy uptake by algae, light absorption exceeding the maximal rate of photosynthesis may go along with enhanced formation of potentially toxic reactive oxygen species. To preempt high light-induced photodamage, photosynthetic organisms evolved numerous photoprotective mechanisms. Among these, energy-dependent fluorescence quenching (qE) provides a rapid mechanism to dissipate thermally the excessively absorbed energy. Diatoms thrive in all aquatic environments and thus belong to the most important primary producers on earth. qE in diatoms is provided by a concerted action of Lhcx proteins and the xanthophyll cycle pigment diatoxanthin. While the exact Lhcx activation mechanism of diatom qE is unknown, two lumen-exposed acidic amino acids within Lhcx proteins were proposed to function as regulatory switches upon light-induced lumenal acidification. By introducing a modified Lhcx1 lacking these amino acids into a Phaeodactylum tricornutum Lhcx1-null qE knockout line, we demonstrate that qE is unaffected by these two amino acids. Based on sequence comparisons with Lhcx4, being incapable of providing qE, we perform domain swap experiments of Lhcx4 with Lhcx1 and identify two peptide motifs involved in conferring qE. Within one of these motifs, we identify a tryptophan residue with a major influence on qE establishment. This tryptophan residue is located in close proximity to the diadinoxanthin/diatoxanthin-binding site based on the recently revealed diatom Lhc crystal structure. Our findings provide a structural explanation for the intimate link of Lhcx and diatoxanthin in providing qE in diatoms.
Assuntos
Diatomáceas/química , Diatomáceas/fisiologia , Complexos de Proteínas Captadores de Luz/química , Motivos de Aminoácidos , Fluorescência , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Prótons , Triptofano/química , Xantofilas/metabolismoRESUMO
Soluble adenylyl cyclase (sAC) has gained attention as a potential therapeutic target given the role of this enzyme in intracellular signaling. We describe successful efforts to design improved sAC inhibitors amenable for in vivo interrogation of sAC inhibition to assess its potential therapeutic applications. This work culminated in the identification of TDI-10229 (12), which displays nanomolar inhibition of sAC in both biochemical and cellular assays and exhibits mouse pharmacokinetic properties sufficient to warrant its use as an in vivo tool compound.
RESUMO
Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.
Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Fertilização/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Animais , Células Cultivadas , Feminino , Fertilização/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Gravidez , Espermatozoides/fisiologiaRESUMO
Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO3 -)-regulated enzyme responsible for the generation of cyclic adenosine monophosphate (cAMP). sAC is distributed throughout the cell and within organelles and, as such, plays a role in numerous cellular signalling pathways. Carbonic anhydrases (CAs) nearly instantaneously equilibrate HCO3 -, protons and carbon dioxide (CO2); because of the ubiquitous presence of CAs within cells, HCO3 --regulated sAC can respond to changes in any of these factors. Thus, sAC can function as a physiological HCO3 -/CO2/pH sensor. Here, we outline examples where we have shown that sAC responds to changes in HCO3 -, CO2 or pH to regulate diverse physiological functions.