Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746214

RESUMO

The p53 family of transcription factors plays key roles in driving development and combating cancer by regulating gene expression. TP53, TP63, and TP73-the three members of the p53 family-regulate gene expression by binding to their DNA binding sites, many of which are situated within nucleosomes. To thoroughly examine the nucleosome-binding abilities of the p53 family, we used Pioneer-seq, a technique that assesses a transcription factor's binding affinity to its DNA binding sites at all possible positions within the nucleosome core particle. Using Pioneer-seq, we analyzed the binding affinity of TP53, TP63, and TP73 to 10 p53-family binding sites across the nucleosome core particle. We found that the affinity of TP53, TP63, and TP73 for nucleosomes was largely determined by the positioning of p53-family binding sites within nucleosomes; p53-family members bind strongly to the more accessible edges of nucleosomes but weakly to the less accessible centers of nucleosomes. We also found that the DNA-helical orientation of p53-family binding sites within nucleosomal DNA impacted the nucleosome-binding affinity of p53-family members. The composition of their binding sites also impacted each p53-family member's nucleosome-binding affinities only when the binding site was located in an accessible location. Taken together, our results show that the accessibility, composition, and helical orientation of p53-family binding sites collectively determine the nucleosome-binding affinities of TP53, TP63, and TP73. These findings help explain the rules underlying p53-family-nucleosome binding and thus provide requisite insight into how we may better control gene-expression changes involved in development and tumor suppression.

2.
Sci Rep ; 14(1): 6222, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485747

RESUMO

Porphyromonas gingivalis, a Gram-negative anaerobic bacterium commonly found in human subgingival plaque, is a major etiologic agent for periodontitis and has been associated with multiple systemic pathologies. Many P. gingivalis strains have been identified and different strains possess different virulence factors. Current oral microbiome approaches (16S or shotgun) have been unable to differentiate P. gingivalis strains. This study presents a new approach that aims to improve the accuracy of strain identification, using a detection method based on sequencing of the intergenic spacer region (ISR) which is variable between P. gingivalis strains. Our approach uses two-step PCR to amplify only the P. gingivalis ISR region. Samples are then sequenced with an Illumina sequencer and mapped to specific strains. Our approach was validated by examining subgingival plaque from 153 participants with and without periodontal disease. We identified the avirulent strain ATCC33277/381 as the most abundant strain across all sample types. The W83/W50 strain was significantly enriched in periodontitis, with 13% of participants harboring that strain. Overall, this approach can have significant implications not only for the diagnosis and treatment of periodontal disease but also for other diseases where P. gingivalis or its toxins have been implicated, such as Alzheimer's disease.


Assuntos
Periodontite , Porphyromonas gingivalis , Humanos , Porphyromonas gingivalis/genética , Composição de Bases , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Filogenia , Periodontite/microbiologia
3.
Nucleic Acids Res ; 51(5): 2333-2344, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36727449

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) Cas system is a powerful tool that has the potential to become a therapeutic gene editor in the near future. Cas9 is the best studied CRISPR system and has been shown to have problems that restrict its use in therapeutic applications. Chromatin structure is a known impactor of Cas9 targeting and there is a gap in knowledge on Cas9's efficacy when targeting such locations. To quantify at a single base pair resolution how chromatin inhibits on-target gene editing relative to off-target editing of exposed mismatching targets, we developed the gene editor mismatch nucleosome inhibition assay (GEMiNI-seq). GEMiNI-seq utilizes a library of nucleosome sequences to examine all target locations throughout nucleosomes in a single assay. The results from GEMiNI-seq revealed that the location of the protospacer-adjacent motif (PAM) sequence on the nucleosome edge drives the ability for Cas9 to access its target sequence. In addition, Cas9 had a higher affinity for exposed mismatched targets than on-target sequences within a nucleosome. Overall, our results show how chromatin structure impacts the fidelity of Cas9 to potential targets and highlight how targeting sequences with exposed PAMs could limit off-target gene editing, with such considerations improving Cas9 efficacy and resolving current limitations.


Assuntos
Sistemas CRISPR-Cas , Nucleossomos , Sistemas CRISPR-Cas/genética , Nucleossomos/genética , Edição de Genes/métodos , Biblioteca Gênica
4.
Front Oncol ; 12: 892207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912202

RESUMO

Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, large scale databases of patient-derived samples, like that of TCGA, have been established, giving the ability to interrogate multiple data modalities per tumor. We have developed a computational strategy employing multimodal integration paired with spectral clustering and modern dimension reduction techniques such as PHATE to provide a more robust method for cancer sub-type classification. Using this integrated approach, we have examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA across gene-expression, DNA-methylation, and microbiome data modalities. We show that these approaches, primarily developed for single-cell sequencing can be efficiently applied to bulk tumor sequencing data. Our multimodal analysis captures the dynamic heterogeneity, identifies new and refines subtypes of HNSC, and orders tumor samples along well-defined cellular trajectories. Collectively, these results showcase the inherent molecular complexity of tumors and offer insights into carcinogenesis and importance of targeted therapy. Computational techniques as highlighted in our study provide an organic and powerful approach to identify granular patterns in large and noisy datasets that may otherwise be overlooked.

5.
J Periodontol ; 93(11): 1635-1648, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35533310

RESUMO

BACKGROUND: This study investigated the association between menopausal hormone therapy (HT) use and the subgingival microbiome, for which published information is limited. METHODS: This cross-sectional study included 1270 postmenopausal women, aged 53-81 years, who completed clinical examinations. Detailed information on HT use (type, delivery mode, duration) was obtained from questionnaires. HT use was categorized into three groups (never, former, current). 16S rRNA sequencing was performed on subgingival plaque samples obtained during dental examinations. Operational taxonomic units were centered log2-ratio (CLR) transformed to account for the compositional data structure. Analysis of variance was used to compare mean microbial relative abundances across HT categories with Benjamini-Hochberg correction. RESULTS: Significantly higher alpha diversity (Shannon Index) and beta diversity (Aitchison distance) was observed in never compared with current HT users (p < 0.05, each). Of the total 245 microbial taxa identified, 18 taxa differed significantly among the three HT groups, 11 of which were higher in current users and seven of which were lower in current users as compared with never users (p < 0.05, each). Differences in relative abundance between never and current HT users were materially unchanged after adjustment for age, body mass index, and oral hygiene. CONCLUSIONS: Relative abundance of several subgingival bacteria differed significantly between never and current HT users in a cohort of postmenopausal women. Additional studies are needed to determine the extent that these relationships might account for the previously reported inverse association between HT use and periodontal disease in older women.


Assuntos
Terapia de Reposição de Estrogênios , Menopausa , Microbiota , Feminino , Humanos , Bactérias , Estudos Transversais , RNA Ribossômico 16S/genética
6.
J Am Heart Assoc ; 11(6): e021930, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35234044

RESUMO

Background Oral microbiota are thought to influence blood pressure (BP) regulation. However, epidemiological data supporting this hypothesis are limited. We examined associations between oral microbiota, BP, and incident hypertension in postmenopausal women. Methods and Results Baseline (1997-2001) examinations were completed on 1215 women (mean age, 63 years) during which subgingival plaque was collected, BP was measured, and medical and lifestyle histories and medication inventory were obtained. Microbiome composition of subgingival plaque was measured using 16S ribosomal RNA gene amplicon sequencing. Baseline measured BP was defined as normotensive (systolic <120 mm Hg and diastolic <80 mm Hg, no BP medication use; n=429); elevated (systolic ≥120 mm Hg or diastolic ≥80 mm Hg, no medication use; n=306); or prevalent treated hypertension (history of physician diagnosis treated with medications; n=480). Incident hypertension (375 cases among 735 without baseline treated hypertension) was defined as newly physician-diagnosed hypertension treated with medication reported on annual health surveys (mean follow-up, 10.4 years). Cross-sectional analysis identified 47 bacterial species (of 245 total) that differed significantly according to baseline BP status (P<0.05). Prospective analysis identified 15 baseline bacterial species significantly (P<0.05) associated with incident hypertension: 10 positively (age-adjusted hazard ratios [HRs], 1.10-1.16 per SD in bacterial abundance) and 5 inversely (HRs, 0.82-0.91) associated. Associations were materially unchanged after further adjustment for demographic, clinical, and lifestyle factors; were similar when analysis was restricted to the normotensive group; and were of consistent magnitudes between strata of baseline age, smoking, body mass index, and BP categories. Conclusions Specific oral bacteria are associated with baseline BP status and risk of hypertension development among postmenopausal women. Research to confirm these observations and elucidate mechanisms is needed.


Assuntos
Hipertensão , Microbiota , Bactérias , Pressão Sanguínea/fisiologia , Estudos Transversais , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Pessoa de Meia-Idade , Pós-Menopausa , Fatores de Risco
7.
Sci Rep ; 12(1): 2643, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173205

RESUMO

Limited research exists on carbohydrate intake and oral microbiome diversity and composition assessed with next-generation sequencing. We aimed to better understand the association between habitual carbohydrate intake and the oral microbiome, as the oral microbiome has been associated with caries, periodontal disease, and systemic diseases. We investigated if total carbohydrates, starch, monosaccharides, disaccharides, fiber, or glycemic load (GL) were associated with the diversity and composition of oral bacteria in subgingival plaque samples of 1204 post-menopausal women. Carbohydrate intake and GL were assessed from a food frequency questionnaire, and adjusted for energy intake. The V3-V4 region of the 16S rRNA gene from subgingival plaque samples were sequenced to identify the relative abundance of microbiome compositional data expressed as operational taxonomic units (OTUs). The abundance of OTUs were centered log(2)-ratio transformed to account for the compositional data structure. Associations between carbohydrate/GL intake and microbiome alpha-diversity measures were examined using linear regression. PERMANOVA analyses were conducted to examine microbiome beta-diversity measures across quartiles of carbohydrate/GL intake. Associations between intake of carbohydrates and GL and the abundance of the 245 identified OTUs were examined by using linear regression. Total carbohydrates, GL, starch, lactose, and sucrose intake were inversely associated with alpha-diversity measures. Beta-diversity across quartiles of total carbohydrates, fiber, GL, sucrose, and galactose, were all statistically significant (p for PERMANOVA p < 0.05). Positive associations were observed between total carbohydrates, GL, sucrose and Streptococcus mutans; GL and both Sphingomonas HOT 006 and Scardovia wiggsiae; and sucrose and Streptococcus lactarius. A negative association was observed between lactose and Aggregatibacter segnis, and between sucrose and both TM7_[G-1] HOT 346 and Leptotrichia HOT 223. Intake of total carbohydrate, GL, and sucrose were inversely associated with subgingival bacteria alpha-diversity, the microbial beta-diversity varied by their intake, and they were associated with the relative abundance of specific OTUs. Higher intake of sucrose, or high GL foods, may influence poor oral health outcomes (and perhaps systemic health outcomes) in older women via their influence on the oral microbiome.


Assuntos
Placa Dentária/microbiologia , Carboidratos da Dieta/efeitos adversos , Ingestão de Alimentos/fisiologia , Gengiva/microbiologia , Microbiota , Pós-Menopausa , Idoso , Idoso de 80 Anos ou mais , Biodiversidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética , Pessoa de Meia-Idade , Saúde Bucal , Estudos Prospectivos
8.
Epigenetics Chromatin ; 14(1): 20, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865440

RESUMO

BACKGROUND: ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. METHODS: In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. RESULTS: Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63's capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. CONCLUSION: Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Sítios de Ligação , Histonas/metabolismo , Nucleossomos
9.
G3 (Bethesda) ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33784385

RESUMO

Distinct mutation signatures arise from environmental exposures and/or from defects in metabolic pathways that promote genome stability. The presence of a particular mutation signature can therefore predict the underlying mechanism of mutagenesis. These insults to the genome often alter dNTP pools, which itself impacts replication fidelity. Therefore, the impact of altered dNTP pools should be considered when making mechanistic predictions based on mutation signatures. We developed a targeted deep-sequencing approach on the CAN1 gene in Saccharomyces cerevisiae to define information-rich mutational profiles associated with distinct rnr1 backgrounds. Mutations in the activity and selectivity sites of rnr1 lead to elevated and/or unbalanced dNTP levels, which compromises replication fidelity and increases mutation rates. The mutation spectra of rnr1Y285F and rnr1Y285A alleles were characterized previously; our analysis was consistent with this prior work but the sequencing depth achieved in our study allowed a significantly more robust and nuanced computational analysis of the variants observed, generating profiles that integrated information about mutation spectra, position effects, and sequence context. This approach revealed previously unidentified, genotype-specific mutation profiles in the presence of even modest changes in dNTP pools. Furthermore, we identified broader sequence contexts and nucleotide motifs that influenced variant profiles in different rnr1 backgrounds, which allowed specific mechanistic predictions about the impact of altered dNTP pools on replication fidelity.


Assuntos
Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Replicação do DNA , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nucleotídeos/metabolismo , Genótipo , Ribonucleotídeo Redutases/genética
10.
J Periodontol ; 92(5): 648-661, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33141988

RESUMO

BACKGROUND: The aim of this study was to quantify the association between subgingival microbiota and periodontal disease progression in older women, for which limited published data exist. METHODS: A total of 1016 postmenopausal women, aged 53 to 81 years, completed baseline (1997 to 2001) and 5-year (2002 to 2006) dental exams that included probing depth, clinical attachment level, gingival bleeding, and radiographic alveolar crestal height (ACH). Baseline microbiota were measured in subgingival plaque using 16S rRNA sequencing. Associations between 52 microbiota we previously found statistically significantly associated with clinical periodontal disease at baseline, were examined with disease progression. The traditional Socransky microbiota complexes also were evaluated. Side-by-side radiograph comparisons were used to define progression as ≥2 teeth with ≥1 mm ACH loss or ≥1 new tooth loss to periodontitis. The association between baseline centered log(2) ratio transformed microbial relative abundances and 5-year periodontal disease progression was measured with generalized linear models. RESULTS: Of 36 microbiota we previously showed were elevated in moderate/severe disease at baseline, 24 had statistically significantly higher baseline mean relative abundance in progressing compared with non-progressing women (P < .05, all); which included all Socransky red bacteria (P. gingivalis, T. forsythia, T. denticola). Of 16 microbiota elevated in none/mild disease at baseline, five had statistically significantly lower baseline abundance in non-progressing compared with progressing women (P < 0.05, all), including one Socransky yellow bacteria (S. oralis). When adjusted for baseline age, socioeconomic status, and self-rated general health status, odds ratios for 5-year progression ranged from 1.18 to 1.51 (per 1-standard deviation increment in relative abundance) for microbiota statistically significantly (P < 0.05) positively associated with progression, and from 0.77 to 0.82 for those statistically significantly (P < 0.05) inversely associated with progression. These associations were similar when stratified on baseline levels of pocket depth, gingival bleeding, ACH, and smoking status. CONCLUSIONS: These prospective results affirm clearly that subgingival microbiota are measurably elevated several years prior to progression of alveolar bone loss, and include antecedent elevations in previously undocumented taxa additional to known Socransky pathogenic complexes.


Assuntos
Perda do Osso Alveolar , Microbiota , Idoso , Perda do Osso Alveolar/diagnóstico por imagem , Feminino , Humanos , Perda da Inserção Periodontal , Bolsa Periodontal , Pós-Menopausa , Estudos Prospectivos , RNA Ribossômico 16S/genética
11.
Sci Adv ; 6(20): eaaz0298, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426495

RESUMO

It has not been possible to generate naïve human pluripotent stem cells (hPSCs) that substantially contribute to mouse embryos. We found that a brief inhibition of mTOR with Torin1 converted hPSCs from primed to naïve pluripotency. The naïve hPSCs were maintained in the same condition as mouse embryonic stem cells and exhibited high clonogenicity, rapid proliferation, mitochondrial respiration, X chromosome reactivation, DNA hypomethylation, and transcriptomes sharing similarities to those of human blastocysts. When transferred to mouse blastocysts, naïve hPSCs generated 0.1 to 4% human cells, of all three germ layers, including large amounts of enucleated red blood cells, suggesting a marked acceleration of hPSC development in mouse embryos. Torin1 induced nuclear translocation of TFE3; TFE3 with mutated nuclear localization signal blocked the primed-to-naïve conversion. The generation of chimera-competent naïve hPSCs unifies some common features of naïve pluripotency in mammals and may enable applications such as human organ generation in animals.


Assuntos
Células-Tronco Pluripotentes , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Quimera , Humanos , Mamíferos , Camundongos , Serina-Treonina Quinases TOR
12.
Mol Genet Genomics ; 295(4): 825-835, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32296927

RESUMO

Pioneer transcription factors are a special group of transcription factors that can interact with nucleosomal DNA and initiate regulatory events. Their binding to regulatory regions is the first event in gene activation and can occur in silent or heterochromatin regions. Several research groups have endeavored to define pioneer factors and study their binding characteristics using various techniques. In this review, we describe the in vitro methods used to define and characterize pioneer factors, paying particular attention to differences in methodologies and how these differences can affect results.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Biologia Molecular/métodos , Fatores de Transcrição/genética , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Biologia Molecular/tendências , Nucleossomos/genética , Ligação Proteica/genética
13.
Oncogene ; 39(2): 262-277, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31477832

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a disease of significant morbidity and mortality and rarely diagnosed in early stages. Despite extensive genetic and genomic characterization, targeted therapeutics and diagnostic markers of HNSCC are lacking due to the inherent heterogeneity and complexity of the disease. Herein, we have generated the global histone mark based epigenomic and transcriptomic cartogram of SCC25, a representative cell type of mesenchymal HNSCC and its normal oral keratinocyte counterpart. Examination of genomic regions marked by differential chromatin states and associated with misregulated gene expression led us to identify SCC25 enriched regulatory sequences and transcription factors (TF) motifs. These findings were further strengthened by ATAC-seq based open chromatin and TF footprint analysis which unearthed Krüppel-like Factor 4 (KLF4) as a potential key regulator of the SCC25 cistrome. We reaffirm the results obtained from in silico and chromatin studies in SCC25 by ChIP-seq of KLF4 and identify ΔNp63 as a co-oncogenic driver of the cancer-specific gene expression milieu. Taken together, our results lead us to propose a model where elevated KLF4 levels sustains the oncogenic state of HNSCC by reactivating repressed chromatin domains at key downstream genes, often by targeting super-enhancers.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição Kruppel-Like/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Cromatina/genética , Epigenômica , Regulação Neoplásica da Expressão Gênica , Código das Histonas/genética , Humanos , Fator 4 Semelhante a Kruppel , Sequências Reguladoras de Ácido Nucleico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fatores de Transcrição/genética
14.
BMC Oral Health ; 19(1): 246, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722703

RESUMO

BACKGROUND: The extent to which the composition and diversity of the oral microbiome varies with age is not clearly understood. METHODS: The 16S rRNA gene of subgingival plaque in 1219 women, aged 53-81 years, was sequenced and its taxonomy annotated against the Human Oral Microbiome Database (v.14.5). Composition of the subgingival microbiome was described in terms of centered log(2)-ratio (CLR) transformed OTU values, relative abundance, and prevalence. Correlations between microbiota abundance and age were evelauted using Pearson Product Moment correlations. P-values were corrected for multiple testing using the Bonferroni method. RESULTS: Of the 267 species identified overall, Veillonella dispar was the most abundant bacteria when described by CLR OTU (mean 8.3) or relative abundance (mean 8.9%); whereas Streptococcus oralis, Veillonella dispar and Veillonella parvula were most prevalent (100%, all) when described as being present at any amount. Linear correlations between age and several CLR OTUs (Pearson r = - 0.18 to 0.18), of which 82 (31%) achieved statistical significance (P < 0.05). The correlations lost significance following Bonferroni correction. Twelve species that differed across age groups (each corrected P < 0.05); 5 (42%) were higher in women ages 50-59 compared to ≥70 (corrected P < 0.05), and 7 (48%) were higher in women 70 years and older. CONCLUSIONS: We identified associations between several bacterial species and age across the age range of postmenopausal women studied. Understanding the functions of these bacteria could identify intervention targets to enhance oral health in later life.


Assuntos
Placa Dentária , Microbiota , Pós-Menopausa , Idoso , Idoso de 80 Anos ou mais , Bactérias , Placa Dentária/metabolismo , Feminino , Humanos , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S
15.
PLoS Genet ; 15(7): e1008250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306413

RESUMO

Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease of significant mortality and with limited treatment options. Recent genomic analysis of HNSCC tumors has identified several distinct molecular classes, of which the mesenchymal subtype is associated with Epithelial to Mesenchymal Transition (EMT) and shown to correlate with poor survival and drug resistance. Here, we utilize an integrated approach to characterize the molecular function of ETS1, an oncogenic transcription factor specifically enriched in Mesenchymal tumors. To identify the global ETS1 cistrome, we have performed integrated analysis of RNA-Seq, ChIP-Seq and epigenomic datasets in SCC25, a representative ETS1high mesenchymal HNSCC cell line. Our studies implicate ETS1 as a crucial regulator of broader oncogenic processes and specifically Mesenchymal phenotypes, such as EMT and cellular invasion. We found that ETS1 preferentially binds cancer specific regulator elements, in particular Super-Enhancers of key EMT genes, highlighting its role as a master regulator. Finally, we show evidence that ETS1 plays a crucial role in regulating the TGF-ß pathway in Mesenchymal cell lines and in leading-edge cells in primary HNSCC tumors that are endowed with partial-EMT features. Collectively our study highlights ETS1 as a key regulator of TGF-ß associated EMT and reveals new avenues for sub-type specific therapeutic intervention.


Assuntos
Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Neoplasias de Cabeça e Pescoço/genética , Proteína Proto-Oncogênica c-ets-1/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Análise de Sobrevida , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
16.
High Blood Press Cardiovasc Prev ; 26(3): 217-225, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236901

RESUMO

INTRODUCTION: A possible role of the oral microbiome, specifically oral nitrate reducing flora, in blood pressure (BP) homeostasis, if proven etiologic in nature, could lead to novel mechanism-based therapy to improve hypertension prevention and control. AIM: This cross-sectional study characterized and compared the oral microbiome between four study groups based on BP status among 446 postmenopausal women aged 53-82 years. METHODS: Three study groups were not taking hypertension medication and were separated based on BP, as follows: normal BP (systolic < 120 and diastolic < 80; N = 179), elevated BP/Stage I hypertension (systolic 120-139 or diastolic 80-90; N = 106), Stage II hypertension (systolic > 140 or diastolic > 90; N = 42). The forth group consisted of anyone taking hypertension medications, regardless of BP (N = 119). Subgingival microbiome composition was determined using 16S rRNA sequencing with the Illumina MiSeq platform. Kruskal-Wallis tests were used to compare species-level relative abundance of bacterial operational taxonomic units across the four groups. RESULTS: Sixty-five bacterial species demonstrated significant differences in relative abundance in women with elevated BP or using hypertension medication as compared to those with normal BP. After correction for multiple testing, two species, Prevotella oral (species 317) and Streptococcus oralis, remained significant and were lower in abundance among women taking antihypertension medications compared to those with normal BP (corrected P < 0.05). CONCLUSIONS: These data provide novel description of oral subgingival bacteria grouped according to BP status. Additional larger studies including functional analysis and prospective designs will help further assess the potential role of the oral microbiome in BP regulation and hypertension.


Assuntos
Bactérias/isolamento & purificação , Pressão Sanguínea , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Microbiota , Boca/microbiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/uso terapêutico , Bactérias/classificação , Bactérias/genética , Pressão Sanguínea/efeitos dos fármacos , Estudos Transversais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Pessoa de Meia-Idade , Pós-Menopausa , Ribotipagem/métodos , Fatores de Risco , Fatores Sexuais
17.
Genome Res ; 29(1): 107-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409772

RESUMO

Accurate gene expression requires the targeting of transcription factors (TFs) to regulatory sequences often occluded within nucleosomes. The ability to target a TF binding site (TFBS) within a nucleosome has been the defining characteristic for a special class of TFs known as pioneer factors. Recent studies suggest TP53 functions as a pioneer factor that can target its TFBS within nucleosomes, but it remains unclear how TP53 binds to nucleosomal DNA. To comprehensively examine TP53 nucleosome binding, we competitively bound TP53 to multiple in vitro-formed nucleosomes containing a high- or low-affinity TP53 TFBS located at differing translational and rotational positions within the nucleosome. Stable TP53-nucleosome complexes were isolated and quantified using next-generation sequencing. Our results demonstrate TP53 binding is limited to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. Binding site affinity only affects TP53 binding for TFBSs located at the same nucleosomal positions; otherwise, nucleosome position takes precedence. Furthermore, TP53 has strong nonspecific nucleosome binding facilitating its interaction with chromatin. Our in vitro findings were confirmed by examining TP53-induced binding in a cell line model, showing induced binding at nucleosome edges flanked by a nucleosome-free region. Overall, our results suggest that the pioneering capabilities of TP53 are driven by nonspecific nucleosome binding with specific binding at nucleosome edges.


Assuntos
Nucleossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Humanos , Nucleossomos/genética , Ligação Proteica , Proteína Supressora de Tumor p53/genética
18.
BMJ Open ; 8(12): e024263, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518590

RESUMO

PURPOSE: The Buffalo Osteoporosis and Periodontal Disease (OsteoPerio) study is a prospective cohort study focused on the relationship between the microbiome and oral and systemic health outcomes in postmenopausal women. The cohort was established to examine how the oral microbiome is affected by (and how it affects) periodontal disease presence, severity and progression and to characterise the relationship between the microbiome, lifestyle habits and systemic disease outcomes. PARTICIPANTS: Participants (n=1342) were postmenopausal women who were participating in the Women's Health Initiative observational study at the Buffalo, New York clinical centre. There were 1026 participants at the 5-year follow-up visit and 518 at the 15-year visit. FINDINGS TO DATE: Data collected include questionnaires, anthropometric measures, serum blood and saliva samples. At each clinic visit, participants completed a comprehensive oral examination to measure oral health and the oral microbiome. Preliminary findings have contributed to our understanding of risk factors for periodontal disease and the relationship between the oral microbiome and periodontal disease. FUTURE PLANS: The novel microbiome data collected on a large sample of participants at three time points will be used to answer a variety of research questions focused on temporal changes in the microbiome and the relationship between the oral microbiome and oral and systemic disease outcomes. Little is currently known about the relationship between the oral microbiome and health outcomes in older adults; data from the OsteoPerio cohort will fill this gap. Microbiome samples are currently being analysed using next-generation sequencing technology with an anticipated completion date of late 2018.


Assuntos
Estilo de Vida , Microbiota , Saúde Bucal/estatística & dados numéricos , Osteoporose/epidemiologia , Doenças Periodontais , Pós-Menopausa , Idoso , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Doenças Periodontais/epidemiologia , Doenças Periodontais/microbiologia , Pós-Menopausa/fisiologia , Pós-Menopausa/psicologia , Estudos Prospectivos , Fatores de Risco , Estados Unidos/epidemiologia , Saúde da Mulher
19.
Dent J (Basel) ; 6(4)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347640

RESUMO

Aging invokes physiological changes, such as immunosenescence and inflammation, that could increase host susceptibility to oral microbiome shifts that enable periodontitis progression in later life. At present, there is a dearth of studies specifically evaluating the oral microbiome and periodontitis in older adults. We used high-throughput untargeted sequencing methods and functional metagenomic analyses to assess and compare the subgingival biofilm of postmenopausal women (mean age 71 years) according to periodontitis status. Subgingival plaque samples were obtained from 15 postmenopausal women with no periodontitis, and from 15 women with severe periodontitis, determined by probing measures. The 16S rRNA gene (V1⁻V3 region) was sequenced on the 454 FLX platform. The PICRUSt technique was used to provide information on what the potential functional characteristics of microbiota might be in healthy, compared with diseased, periodontium. The subgingival microbiome associated with periodontitis showed clear differences to that associated with health. Of the 464 species identified, 22.8% had elevated abundance in disease, while only 6.3% had elevated abundance in health. Among the 12 most prevalent organisms in periodontitis, one-half have previously been recognized as periodontal pathogens by other investigators. The subgingival microbiome in periodontitis contained genes that could code for specific activities, including microbial mobility, synthesis of endotoxin, and proteolytic degradation. The healthy microbiome included genes that could code for sustaining microbial life, including encoding for transporters, glycolysis, gluconeogenesis, the Krebs cycle, and protein kinases. In the present study on postmenopausal women, aged 60 and older, the subgingival microbiome differed in composition and potential function between those with and without periodontitis. Studies of functional gene expression, such as transcriptomics, are needed to definitively identify the molecules carrying out functions associated with pathogenic subgingival complexes. This, in turn, could lead to identification of targets for enhanced management of periodontitis and, possibly, other diseases, in later life.

20.
Physiol Genomics ; 50(4): 244-254, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373083

RESUMO

A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Inflamação/imunologia , Inflamação/microbiologia , Resistência à Insulina/fisiologia , Obesidade/imunologia , Obesidade/microbiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA