Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 228: 115834, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037314

RESUMO

Corona ions from high voltage power lines (HVPL) can increase electrostatic charge on airborne pollutant particulates, possibly increasing received dose upon inhalation. To investigate the potential increased risk of childhood leukemia associated with residence near alternating current (AC) HVPL, we measured the particle charge state and atmospheric electricity parameters upwind, downwind and away from HVPL. Although we observed noticeable charge state alteration from background levels, most HVPL do not significantly increase charge magnitude. Particular HVPL types are shown to have most effect, increasing net charge to 15 times that at background. However, the magnitude of charge alteration during rainfall is comparable with the most extreme HVPL measurement. On current evidence, based on the current adult lung model, we suggest that although charge is sometimes enhanced to levels which may alter atmospheric particle dynamics, increased lung deposition is unlikely.


Assuntos
Poluentes Atmosféricos , Pulmão , Pulmão/química , Eletricidade , Aerossóis , Poluentes Atmosféricos/análise , Chuva , Tamanho da Partícula
2.
Inhal Toxicol ; 32(7): 282-298, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32689844

RESUMO

Carbon nanotube (CNT) in vivo inhalation studies are increasingly providing estimates of the quantity of material deposited in the lung, generally estimated using standard formulae and pulmonary deposition models. These models have typically been developed and validated using data from studies using sphere-like particles. Given the importance of particle morphology to pulmonary deposition, the appropriateness of such an approach was explored to identify any potential limitations. Aerosolized CNT particles typically form 'fiber-like' and/or 'broadly spherical' agglomerates. A review of currently used deposition models indicates that none have been directly validated against results for CNT, however, models for spherical particles have been extensively validated against a wide range of particle sizes and materials and are thus expected to provide reasonable estimates for most 'broadly spherical' CNT particles, although experimental confirmation of this would be of benefit, especially given their low density. The validation of fiber deposition models is significantly less extensive and, in general, focused on larger particles, e.g. asbestos. This raises concerns about the accuracy of deposition estimates for 'fiber-like' CNT particles and recommendations are made for future research to address this. An appreciation of the uncertainties on CNT deposition estimates is important for their interpretation and thus it is recommended that model sensitivity and uncertainty assessments be undertaken. Issues surrounding the measurement and derivation of model input data are also addressed, including instrument responses and particle density assessment options. Recommendations are also made for aerosol characterization to 'future-proof' CNT inhalation studies regarding advances in deposition modeling and toxicological understanding.


Assuntos
Pulmão/metabolismo , Modelos Biológicos , Nanotubos de Carbono , Aerossóis , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA