Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 340: 122210, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858031

RESUMO

Fluorescence labeling with N-(1-naphthyl)ethylenediamine is highly effective for quantifying oxidized reducing end groups (REGs) in cellulosic materials. When combined with size exclusion chromatography in DMAc/LiCl, along with fluorescence / multiple-angle laser light scattering / refractive index detection, a detailed profile of C1-oxidized REGs relative to the molecular weight distribution of the cellulosic material can be obtained. In this work, the derivatization process was extensively optimized, to be carried out heterogeneously in the solvent N-methyl-2-pyrrolidone. Furthermore, we show that to achieve high selectivity for carboxyl groups at the C1 position, keto and aldehyde groups need to be selectively reduced (e.g., by NaBH4), and carboxyl groups other than at C1 need to be blocked (e.g., by methylation with (trimethylsilyl)diazomethane) prior to fluorescence labeling of carboxyl groups at C1 position. Finally, we demonstrate the practical value of the analytical method by measuring the content of the C1-oxidized REGs in cellulose samples after chemical (by Pinnick oxidation) or enzymatic (by treatment with C1-oxidizing LPMO enzymes) oxidation of various pulp samples.

2.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634234

RESUMO

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Assuntos
Celulose , Celulose/química , Fibra de Algodão , Cromatografia em Gel/métodos
3.
Carbohydr Polym ; 330: 121816, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368098

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are excellent candidates for enzymatic functionalization of natural polysaccharides, such as cellulose or chitin, and are gaining relevance in the search for renewable biomaterials. Here, we assessed the cellulose fiber modification potential and catalytic performance of eleven cellulose-active fungal AA9-type LPMOs, including C1-, C4-, and C1/C4-oxidizing LPMOs with and without CBM1 carbohydrate-binding modules, on cellulosic substrates with different degrees of crystallinity and polymer chain arrangement, namely, Cellulose I, Cellulose II, and amorphous cellulose. The potential of LPMOs for cellulose fiber modification varied among the LPMOs and depended primarily on operational stability and substrate binding, and, to some extent, also on regioselectivity and domain structure. While all tested LPMOs were active on natural Cellulose I-type fibers, activity on the Cellulose II allomorph was almost exclusively detected for LPMOs containing a CBM1 and LPMOs with activity on soluble hemicelluloses and cello-oligosaccharides, for example NcAA9C from Neurospora crassa. The single-domain variant of NcAA9C oxidized the cellulose fibers to a higher extent than its CBM-containing natural variant and released less soluble products, indicating a more dispersed oxidation pattern without a CBM. Our findings reveal great functional variation among cellulose-active LPMOs, laying the groundwork for further LPMO-based cellulose engineering.


Assuntos
Celulose , Polissacarídeos , Celulose/metabolismo , Polissacarídeos/metabolismo , Oxirredução , Oxigenases de Função Mista/química , Oligossacarídeos/metabolismo , Estresse Oxidativo
4.
Carbohydr Polym ; 328: 121696, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220335

RESUMO

Enzymatic treatment of cellulosic fibres is a green alternative to classical chemical modification. For many applications, mild procedures for cellulose alteration are sufficient, in which the fibre structure and, therefore, the mechanical performance of cellulosic fibres are preserved. Lytic polysaccharide monooxygenases (LPMOs) bear a great potential to become a green reagent for such targeted cellulose modifications. An obstacle for wide implementation of LPMOs in tailored cellulose chemistry is the lack of suitable techniques to precisely monitor the LPMO impact on the polymer. Soluble oxidized cello-oligomers can be quantified using chromatographic and mass-spectrometric techniques. A considerable portion of the oxidized sites, however, remain on the insoluble cellulose fibres, and their quantification is difficult. Here, we describe a method for the simultaneous quantification of oxidized sites on cellulose fibres and changes in their molar mass distribution after treatment with LPMOs. The method is based on quantitative, heterogeneous, carbonyl-selective labelling with a fluorescent label (CCOA) followed by cellulose dissolution and size-exclusion chromatography (SEC). Application of the method to reactions of seven different LPMOs with pure cellulose fibres revealed pronounced functional differences between the enzymes, showing that this CCOA/SEC/MALS method is a promising tool to better understand the catalytic action of LPMOs.


Assuntos
Oxigenases de Função Mista , Polissacarídeos , Oxigenases de Função Mista/química , Celulose , Espectrometria de Massas , Cromatografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA