Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Parasitol Res ; 121(12): 3627-3634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208309

RESUMO

The Atlantic Forests outside of the Amazon region in Brazil are low-frequency malaria hotspots. The disease behaves as a zoonosis maintained by nonhuman primates (NHPs), especially howler monkeys. Between 2016 and 2018, Brazil witnessed the largest yellow fever outbreak since 1980, resulting in massive declines in these NHP populations. However, reports of malaria cases continued in transmission areas. This scenario motivated this survey to determine the frequency of infection of the anophelines by Plasmodium species. Mosquitoes were captured using Shannon traps and CDC light traps and identified as to species based on morphological characters. The screening for malaria parasites targeted only Anopheles species belonging to the subgenus Kerteszia, the proven primary malaria vector. A TaqMan qPCR assay using ribosomal primers (18S rRNA gene) was performed in a Step One Plus Real-time PCR to detect Plasmodium species. Seven hundred sixty field-caught anophelines divided into 76 pools were examined. Out of 76 tested pools, seven (9.21%) were positive. Three pools were Plasmodium malariae-positive, and four were Plasmodium vivax-positive. The anopheline infection was expressed as the maximum infection rate (MIR), disclosing a value of 0.92%, indicative of a steady state. Such stability after the yellow fever outbreak suggests that other species of NHPs could support transmission.


Assuntos
Alouatta , Anopheles , Malária , Plasmodium , Febre Amarela , Animais , Malária/epidemiologia , Malária/veterinária , Mosquitos Vetores , Plasmodium/genética , Florestas , Plasmodium malariae , Brasil/epidemiologia
2.
Parasitol Res ; 120(8): 2759-2767, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34273000

RESUMO

In Brazil, the Amazon region comprises 99.5% of the reported malaria cases. However, another hotspot of the disease is the Atlantic Forest regions, with the sporadic occurrence of autochthonous human cases. In such context, this study sought to investigate the role of anopheline mosquitoes (Diptera: Culicidae) in the residual malaria transmission in Atlantic Forest areas. Two rural areas in the Espírito Santo state were the surveyed sites. Mosquitoes were captured using Shannon trap and CDC light traps and identified into species based on morphological characters. Ecological indexes (Shannon-Wiener diversity, Simpson's dominance, Pielou equability, and Sorensen similarity) were the tools used in the anopheline fauna characterization and comparison along with the two explored areas. The assessment of the sampling adequacy in the studied areas was possible through the generation of a species accumulation curve. A correlation test verified the influence of climatic variables on the anopheline species abundance. A total of 1471 female anopheline mosquitoes were collected from May 2019 to April 2020, representing 13 species. The species richness was higher in Valsugana Velha (hypo-endemic) than in Alto Caparaó (non-endemic). There was a significant variation in the species abundance between Valsugana Velha (n = 1438) and Alto Caparaó (n = 33). The most abundant species was Anopheles (Kerteszia) cruzii complex Dyar and Knab, 1908 representing 87% of the total anophelines collected. These results suggest that the Plasmodium spp. circulation in Brazilian Atlantic Forest areas occurs mainly due to the high frequency of Anopheles (K.) cruzii complex, considered the principal vector of simian and human malaria in the region.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Anopheles/parasitologia , Brasil/epidemiologia , Feminino , Florestas , Humanos , Malária/epidemiologia , Malária/transmissão , Mosquitos Vetores/parasitologia
3.
Microorganisms ; 9(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430150

RESUMO

In the south and southeast regions of Brazil, cases of malaria occur outside the endemic Amazon region near the Atlantic Forest in some coastal states, where Plasmodium vivax is the recognized parasite. Characteristics of cases and vectors, especially Anopheles (Kerteszia) cruzii, raise the hypothesis of a zoonosis with simians as reservoirs. The present review aims to report on investigations of the disease over a 23-year period. Two main sources have provided epidemiological data: the behavior of Anopheles vectors and the genetic and immunological aspects of Plasmodium spp. obtained from humans, Alouatta simians, and Anopheles spp. mosquitoes. Anopheles (K.) cruzii is the most captured species in the forest canopy and is the recognized vector. The similarity between P. vivax and Plasmodium simium and that between Plasmodium malariae and Plasmodium brasilianum shared between simian and human hosts and the involvement of the same vector in the transmission to both hosts suggest interspecies transfer of the parasites. Finally, recent evidence points to the presence of Plasmodium falciparum in a silent cycle, detected only by molecular methods in asymptomatic individuals and An. (K.) cruzii. In the context of malaria elimination, it is paramount to assemble data about transmission in such non-endemic low-incidence areas.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35284897

RESUMO

Plasmodium malariae and Plasmodium vivax are protozoan parasites that can cause malaria in humans. They are genetically indistinguishable from, respectively, Plasmodium brasilianum and Plasmodium simium, i.e. parasites infecting New World non-human primates in South America. In the tropical rainforests of the Brazilian Atlantic coast, it has long been hypothesized that P. brasilianum and P. simium in platyrrhine primates originated from P. malariae and P. vivax in humans. A recent hypothesis proposed the inclusion of Plasmodium falciparum into the transmission dynamics between humans and non-human primates in the Brazilian Atlantic tropical rainforest. Herein, we assess the occurrence of human malaria in simians and sylvatic anophelines using field-collected samples in the Capivari-Monos Environmental Protection Area from 2015 to 2017. We first tested simian blood and anopheline samples. Two simian (Aloutta) blood samples (18%, n = 11) showed Plasmodium cytb DNA sequences, one for P. vivax and another for P. malariae. From a total of 9,416 anopheline females, we found 17 pools positive for Plasmodium species with a 18S qPCR assay. Only three showed P. cytb DNA sequence, one for P. vivax and the others for rodent malaria species (similar to Plasmodium chabaudi and Plasmodium berghei). Based on these results, we tested 25 rodent liver samples for the presence of Plasmodium and obtained P. falciparum cytb DNA sequence in a rodent (Oligoryzomys sp.) liver. The findings of this study indicate complex malaria transmission dynamics composed by parallel spillover-spillback of human malaria parasites, i.e. P. malariae, P. vivax, and P. falciparum, in the Brazilian Atlantic forest.

5.
Rev. bras. parasitol. vet ; 27(3): 384-389, July-Sept. 2018. tab
Artigo em Inglês | LILACS | ID: biblio-1042481

RESUMO

Abstract Toxoplasma gondii presents a high prevalence worldwide, infecting several animals. Felines are considered the definitive hosts and among the intermediate hosts we highlight mammals and birds. The man can become infected by ingesting tissue cysts present in birds and mammals. Biological and molecular aspects of T. gondii allows a better understanding of the epidemiology of toxoplasmosis. This work is a serologic screening of 58 chickens grown (Gallus gallus domesticus) for human consumption in Espírito Santo State, by means of indirect haemagglutination assay (IHA). Thirteen chickens tested positive for anti-T. gondii antibodies. The heart and brain of five positive chickens were harvested, treated with pepsin and inoculated separately, in two Swiss mice, intraperitoneally. Tachyzoites were observed in the peritoneum of all the animals, between seven and 10 days after the inoculum. Ten isolates were obtained and biologically characterised in BALB/c mice inoculated with 101 to 104 tachyzoites. All isolates were classified as virulent or intermediately virulent. Isolates were genotyped by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, revealing three different genotypes. None of the isolates exhibited the clonal type I, II or III genotype. No genotypic differences were observed between the isolates from the brain or heart from the same bird.


Resumo Toxoplasma gondii apresenta alta prevalência mundial, capaz de infectar diversos animais. Felinos são considerados os hospedeiros definitivos e entre os hospedeiros intermediários destacamos os mamíferos e as aves. O homem pode se infectar ingerindo cistos teciduais presentes na carne das aves e mamíferos. O conhecimento dos aspectos biológicos e moleculares do parasito possibilitam melhor entendimento da epidemiologia da toxoplasmose. Neste trabalho foi realizada triagem sorológica por hemaglutinação indireta (HI) em 58 galinhas caipiras (Gallus gallus domesticus) utilizadas para consumo humano, provenientes do estado do Espírito Santo, Brasil. Treze galinhas apresentaram sorologia positiva para T. gondii. O coração e o cérebro de cinco galinhas positivas foram colhidos, tratados com pepsina e inoculados separadamente, em dois camundongos Swiss, por via intraperitoneal. Observou-se taquizoítos no peritônio de todos os camundongos, entre sete e 10 dias após o inóculo. Foram obtidos 10 novos isolados de T. gondii os quais foram estudados em camundongos BALB/C inoculados com 101 a 104 taquizoítos por animal. Todos os isolados foram considerados virulentos ou de virulência intermediária. A caracterização molecular dos isolados, realizada por PCR-RFLP, demonstrou a ocorrência de três genótipos distintos. Nenhum isolado apresentou genótipo clonal ou linhagem clonal do Brasil. Não foi observada diferença molecular (PCR-RFLP) entre os isolados obtidos a partir do cérebro ou do coração da mesma ave. Dois isolados já haviam sido relatados na literatura como causadores de doenças em humanos.


Assuntos
Feminino , Camundongos , Doenças das Aves Domésticas/parasitologia , Toxoplasma/patogenicidade , Anticorpos Antiprotozoários/sangue , Galinhas/parasitologia , Toxoplasmose Animal/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Toxoplasma/isolamento & purificação , Toxoplasma/genética , Polimorfismo de Fragmento de Restrição , Brasil , Testes de Aglutinação , Reação em Cadeia da Polimerase , DNA de Protozoário/análise , Genótipo , Camundongos Endogâmicos BALB C
6.
Rev Bras Parasitol Vet ; 27(3): 384-389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29846444

RESUMO

Toxoplasma gondii presents a high prevalence worldwide, infecting several animals. Felines are considered the definitive hosts and among the intermediate hosts we highlight mammals and birds. The man can become infected by ingesting tissue cysts present in birds and mammals. Biological and molecular aspects of T. gondii allows a better understanding of the epidemiology of toxoplasmosis. This work is a serologic screening of 58 chickens grown (Gallus gallus domesticus) for human consumption in Espírito Santo State, by means of indirect haemagglutination assay (IHA). Thirteen chickens tested positive for anti-T. gondii antibodies. The heart and brain of five positive chickens were harvested, treated with pepsin and inoculated separately, in two Swiss mice, intraperitoneally. Tachyzoites were observed in the peritoneum of all the animals, between seven and 10 days after the inoculum. Ten isolates were obtained and biologically characterised in BALB/c mice inoculated with 101 to 104 tachyzoites. All isolates were classified as virulent or intermediately virulent. Isolates were genotyped by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, revealing three different genotypes. None of the isolates exhibited the clonal type I, II or III genotype. No genotypic differences were observed between the isolates from the brain or heart from the same bird.


Assuntos
Anticorpos Antiprotozoários/sangue , Galinhas/parasitologia , Doenças das Aves Domésticas/parasitologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/diagnóstico , Testes de Aglutinação , Animais , Brasil , DNA de Protozoário/análise , Feminino , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Doenças das Aves Domésticas/diagnóstico , Toxoplasma/genética , Toxoplasma/isolamento & purificação
7.
Malar J ; 17(1): 113, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540186

RESUMO

BACKGROUND: The hypotheses put forward to explain the malaria transmission cycle in extra-Amazonian Brazil, an area of very low malaria incidence, are based on either a zoonotic scenario involving simian malaria, or a scenario in which asymptomatic carriers play an important role. OBJECTIVES: To determine the incidence of asymptomatic infection by detecting Plasmodium spp. DNA and its role in residual malaria transmission in a non-Amazonian region of Brazil. METHODS: Upon the report of the first malaria case in 2010 in the Atlantic Forest region of the state of Espírito Santo, inhabitants within a 2 km radius were invited to participate in a follow-up study. After providing signed informed consent forms, inhabitants filled out a questionnaire and gave blood samples for PCR, and thick and thin smears. Follow-up visits were performed every 3 months over a 21 month period, when new samples were collected and information was updated. RESULTS: Ninety-two individuals were initially included for follow-up. At the first collection, all of them were clearly asymptomatic. One individual was positive for Plasmodium vivax, one for Plasmodium malariae and one for both P. vivax and P. malariae, corresponding to a prevalence of 3.4% (2.3% for each species). During follow-up, four new PCR-positive cases (two for each species) were recorded, corresponding to an incidence of 2.5 infections per 100 person-years or 1.25 infections per 100 person-years for each species. A mathematical transmission model was applied, using a low frequency of human carriers and the vector density in the region, and calculated based on previous studies in the same locality whose results were subjected to a linear regression. This analysis suggests that the transmission chain is unlikely to be based solely on human carriers, regardless of whether they are symptomatic or not. CONCLUSION: The low incidence of cases and the low frequency of asymptomatic malaria carriers investigated make it unlikely that the transmission chain in the region is based solely on human hosts, as cases are isolated one from another by hundreds of kilometers and frequently by long periods of time, reinforcing instead the hypothesis of zoonotic transmission.


Assuntos
DNA de Protozoário/sangue , Malária/epidemiologia , Malária/parasitologia , Plasmodium/isolamento & purificação , Adolescente , Adulto , Brasil/epidemiologia , Portador Sadio , Feminino , Humanos , Incidência , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Prevalência , Adulto Jovem
8.
Mem. Inst. Oswaldo Cruz ; 113(2): 111-118, Feb. 2018. tab, graf
Artigo em Inglês | LILACS, SES-SP | ID: biblio-894892

RESUMO

BACKGROUND In southeastern Brazil, autochthonous cases of malaria can be found near Atlantic Forest fragments. Because the transmission cycle has not been completely clarified, the behaviour of the possible vectors in those regions must be observed. A study concerning the entomological aspects and natural infection of anophelines (Diptera: Culicidae) captured in the municipalities of the mountainous region of Espírito Santo state was performed in 2004 and 2005. Similarly, between 2014 and 2015, 12 monthly collections were performed at the same area of the study mentioned above. METHODS Center for Disease Control (CDC) light traps with CO2 were set in open areas, at the edge and inside of the forest (canopy and ground), whereas Shannon traps were set on the edge. FINDINGS A total of 1,414 anophelines were collected from 13 species. Anopheles (Kerteszia) cruzii Dyar and Knab remained the most frequently captured species in the CDC traps set in the forest canopy, as well as being the vector with the highest prevalence of Plasmodium vivax/simium infection, according to molecular polymerase chain reaction techniques. CONCLUSIONS P. vivax/simium was found only in abdomens of the mosquitoes of the subgenus Nyssorhynchus, weakening the hypothesis that this subgenus also plays a role in malaria transmission in this specific region.


Assuntos
Mosquitos Vetores/parasitologia , Malária/transmissão , Anopheles/classificação , Anopheles/parasitologia , Brasil , Florestas , Densidade Demográfica , Malária
9.
Mem Inst Oswaldo Cruz ; 113(2): 111-118, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29236924

RESUMO

BACKGROUND In southeastern Brazil, autochthonous cases of malaria can be found near Atlantic Forest fragments. Because the transmission cycle has not been completely clarified, the behaviour of the possible vectors in those regions must be observed. A study concerning the entomological aspects and natural infection of anophelines (Diptera: Culicidae) captured in the municipalities of the mountainous region of Espírito Santo state was performed in 2004 and 2005. Similarly, between 2014 and 2015, 12 monthly collections were performed at the same area of the study mentioned above. METHODS Center for Disease Control (CDC) light traps with CO2 were set in open areas, at the edge and inside of the forest (canopy and ground), whereas Shannon traps were set on the edge. FINDINGS A total of 1,414 anophelines were collected from 13 species. Anopheles (Kerteszia) cruzii Dyar and Knab remained the most frequently captured species in the CDC traps set in the forest canopy, as well as being the vector with the highest prevalence of Plasmodium vivax/simium infection, according to molecular polymerase chain reaction techniques. CONCLUSIONS P. vivax/simium was found only in abdomens of the mosquitoes of the subgenus Nyssorhynchus, weakening the hypothesis that this subgenus also plays a role in malaria transmission in this specific region.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação , Animais , Anopheles/classificação , Brasil , Florestas , Malária/transmissão , Mosquitos Vetores/classificação , Plasmodium/classificação , Densidade Demográfica , Estações do Ano
10.
Malar J ; 16(1): 437, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084553

RESUMO

BACKGROUND: The transmission of malaria in the extra-Amazonian regions of Brazil, although interrupted in the 1960s, has persisted to the present time in some areas of dense Atlantic Forest, with reports of cases characterized by particular transmission cycles and clinical presentations. Bromeliad-malaria, as it is named, is particularly frequent in the state of Espírito Santo, with Plasmodium vivax being the parasite commonly recognized as the aetiologic agent of human infections. With regard to the spatial and temporal distances between cases reported in this region, the transmission cycle does not fit the traditional malaria cycle. The existence of a zoonosis, with infected simians participating in the epidemiology, is therefore hypothesized. In the present study, transmission of bromeliad-malaria in Espírito Santo is investigated, based on the complete mitochondrial genome of DNA extracted from isolates of Plasmodium species, which had infected humans, a simian from the genus Allouata, and Anopheles mosquitoes. Plasmodium vivax/simium was identified in the samples by both nested PCR and real-time PCR. After amplification, the mitochondrial genome was completely sequenced and compared with a haplotype network which included all sequences of P. vivax/simium mitochondrial genomes sampled from humans and simians from all regions in Brazil. RESULTS: The haplotype network indicates that humans and simians from the Atlantic Forest become infected by the same haplotype, but some isolates from humans are not identical to the simian isolate. In addition, the plasmodial DNA extracted from mosquitoes revealed sequences different from those obtained from simians, but similar to two isolates from humans. CONCLUSIONS: These findings strengthen support for the hypothesis that in the Atlantic Forest, and especially in the state with the highest frequency of bromeliad-malaria in Brazil, parasites with similar molecular backgrounds are shared by humans and simians. The recognized identity between P. vivax and P. simium at the species level, the sharing of haplotypes, and the participation of the same vector in transmitting the infection to both host species indicate interspecies transference of the parasites. However, the intensity, frequency and direction of this transfer remain to be clarified.


Assuntos
Alouatta , Anopheles/parasitologia , Genoma Mitocondrial , Genoma de Protozoário , Malária Vivax/parasitologia , Doenças dos Macacos/parasitologia , Plasmodium vivax/genética , Alouatta/parasitologia , Animais , Brasil , Humanos , Plasmodium vivax/classificação , Reação em Cadeia da Polimerase em Tempo Real
11.
Malar J ; 16(1): 452, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121963

RESUMO

BACKGROUND: Regions with residual transmission are potential obstacles to the elimination of malaria. It is, therefore, essential to understand the factors associated with the maintenance of endemic malaria in these areas. The objective was to investigate whether the status of asymptomatic carriers of Plasmodium spp. DNA is maintained in the long term in an extra-Amazonian region of Brazil with low incidence, residual malaria transmission. METHODS: Asymptomatic carriers of Plasmodium DNA detected in a survey carried out between 2001 and 2004 were reassessed between 2010 and 2011 using questionnaires, PCR and thick and thin blood smear tests three times at 3-month intervals. RESULTS: Of the 48 carriers detected between 2001 and 2004, 37 were located. Of these, only two had positive PCR results and, as in the first survey, Plasmodium malariae DNA was detected. CONCLUSION: The findings suggest that untreated dwellers from this extra-Amazonian region, who initially harbour malaria parasites, may become negative without ever developing apparent symptoms of the disease. Although the possibility of re-infection cannot be ruled out, the finding of two individuals harbouring P. malariae, both in the first and in the second survey, may be compatible with a long-term carrier state for this parasite. Since most clinical cases of malaria in the region are a consequence of infection by Plasmodium vivax, the epidemiological impact of such long-term carriage would be limited.


Assuntos
Infecções Assintomáticas/epidemiologia , Malária/epidemiologia , Plasmodium/isolamento & purificação , Adolescente , Adulto , Brasil/epidemiologia , Criança , Estudos de Coortes , Feminino , Humanos , Incidência , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA