Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415334

RESUMO

Gene regulatory mechanisms that specify subtype identity of central complex (CX) neurons are the subject of intense investigation. The CX is a compartment within the brain common to all insect species and functions as a 'command center' that directs motor actions. It is made up of several thousand neurons, with more than 60 morphologically distinct identities. Accordingly, transcriptional programs must effect the specification of at least as many neuronal subtypes. We demonstrate a role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX neurons in Tribolium. The developmental dynamics of skh expression are characteristic of terminal selectors of subtype identity. In the embryonic brain, skh expression is restricted to a subset of neurons, many of which survive to adulthood and contribute to the mature CX. skh expression is maintained throughout the lifetime in at least some CX neurons. skh knockdown results in axon outgrowth defects, thus preventing the formation of an embryonic CX primordium. The previously unstudied Drosophila skh shows a similar embryonic expression pattern, suggesting that subtype specification of CX neurons may be conserved.


Assuntos
Axônios/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Crescimento Neuronal , Fatores de Transcrição/metabolismo , Tribolium/metabolismo , Animais , Axônios/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Tribolium/embriologia , Tribolium/genética
2.
Methods Mol Biol ; 2047: 219-232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31552657

RESUMO

The red flour beetle, Tribolium castaneum, is an emerging model system well suited to the study of embryonic brain development and evolution (see Chapters 11 and 13 ). Brain genesis is driven by specific gene products whose expression underlies a tight spatiotemporal control. Therefore, the analysis of gene expression in time and space provides valuable insights into the molecular mechanisms that govern brain development. Since Tribolium-specific antibodies are scarce, fluorescent RNA in situ hybridization is the method of choice to determine the dynamics of individual gene expression. We have modified common RNA in situ protocols to facilitate the concomitant detection of two gene-specific expression patterns (double fluorescent RNA in situ). In addition, we describe a procedure which combines fluorescent single RNA in situ and immunostaining with gene-specific antibodies. Conventional in situ using RNA probes that are complementary to mature mRNAs often produce diffuse signals. We demonstrate that RNA in situ probes complementary to intronic gene sequences facilitate single cell resolution because the fluorescent signal is restricted to the nucleus. We believe our protocols can be adapted easily to suit the analysis of brain development in other insect species.


Assuntos
Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Tribolium/embriologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Íntrons/genética , Tribolium/metabolismo
3.
Elife ; 82019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31625505

RESUMO

The genetic control of anterior brain development is highly conserved throughout animals. For instance, a conserved anterior gene regulatory network specifies the ancestral neuroendocrine center of animals and the apical organ of marine organisms. However, its contribution to the brain in non-marine animals has remained elusive. Here, we study the function of the Tc-foxQ2 forkhead transcription factor, a key regulator of the anterior gene regulatory network of insects. We characterized four distinct types of Tc-foxQ2 positive neural progenitor cells based on differential co-expression with Tc-six3/optix, Tc-six4, Tc-chx/vsx, Tc-nkx2.1/scro, Tc-ey, Tc-rx and Tc-fez1. An enhancer trap line built by genome editing marked Tc-foxQ2 positive neurons, which projected through the primary brain commissure and later through a subset of commissural fascicles. Eventually, they contributed to the central complex. Strikingly, in Tc-foxQ2 RNAi knock-down embryos the primary brain commissure did not split and subsequent development of midline brain structures stalled. Our work establishes foxQ2 as a key regulator of brain midline structures, which distinguish the protocerebrum from segmental ganglia. Unexpectedly, our data suggest that the central complex evolved by integrating neural cells from an ancestral anterior neuroendocrine center.


Assuntos
Encéfalo/embriologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tribolium/embriologia , Animais , Diferenciação Celular , Células-Tronco Neurais/fisiologia
4.
Dev Cell ; 31(6): 784-800, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25535920

RESUMO

MicroRNAs are abundant in animal genomes, yet little is known about their functions in vivo. Here, we report the production of 80 new Drosophila miRNA mutants by targeted homologous recombination. These mutants remove 104 miRNAs. Together with 15 previously reported mutants, this collection includes 95 mutants deleting 130 miRNAs. Collectively, these genes produce over 99% of all Drosophila miRNAs, measured by miRNA sequence reads. We present a survey of developmental and adult miRNA phenotypes. Over 80% of the mutants showed at least one phenotype using a p < 0.01 significance threshold. We observed a significant correlation between miRNA abundance and phenotypes related to survival and lifespan, but not to most other phenotypes. miRNA cluster mutants were no more likely than single miRNA mutants to produce significant phenotypes. This mutant collection will provide a resource for future analysis of the biological roles of Drosophila miRNAs.


Assuntos
Drosophila/genética , MicroRNAs/genética , Mutação , Alelos , Animais , Biologia Computacional , Drosophila melanogaster/genética , Feminino , Vetores Genéticos , Masculino , MicroRNAs/metabolismo , Família Multigênica , Fenótipo , Recombinação Genética
5.
Cell Metab ; 16(5): 601-12, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23122660

RESUMO

We sequenced Drosophila head RNA to identify a small set of miRNAs that undergo robust circadian cycling. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights off. The cluster pri-miRNA is transcribed under bona fide circadian transcriptional control, and all six mature miRNAs have short half-lives, a requirement for cycling. A viable Gal4 knockin strain localizes prominent cluster miRNA expression to the adult head fat body. Analysis of cluster knockout and overexpression strains indicates that innate immunity, metabolism, and feeding behavior are under cluster miRNA regulation. Manipulation of food intake also affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. These observations indicate a feedback circuit between feeding time and cluster miRNA expression function as well as a surprising role of posttranscriptional regulation in the circadian control of these phenotypes.


Assuntos
Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Animais , Relógios Circadianos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Imunidade Inata , MicroRNAs/genética , Família Multigênica , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Development ; 134(15): 2807-13, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17611224

RESUMO

Trichomes are cytoplasmic extrusions of epidermal cells. The molecular mechanisms that govern the differentiation of trichome-producing cells are conserved across species as distantly related as mice and flies. Several signaling pathways converge onto the regulation of a conserved target gene, shavenbaby (svb, ovo), which, in turn, stimulates trichome formation. The Drosophila ventral epidermis consists of the segmental alternation of two cell types that produce either naked cuticle or trichomes called denticles. The binary choice to produce naked cuticle or denticles is affected by the transcriptional regulation of svb, which is sufficient to cell-autonomously direct denticle formation. The expression of svb is regulated by the opposing gradients of two signaling molecules--the epidermal growth factor receptor (Egfr) ligand Spitz (Spi), which activates svb expression, and Wingless (Wg), which represses it. It has remained unclear how these opposing signals are integrated to establish a distinct domain of svb expression. We show that the expression of the high mobility group (HMG)-domain protein SoxNeuro (SoxN) is activated by Spi, and repressed by Wg, signaling. SoxN is necessary and sufficient to cell-autonomously direct the expression of svb. The closely related protein Dichaete is co-regulated with SoxN and has a partially redundant function in the activation of svb expression. In addition, we show that SoxN and Dichaete function upstream of Wg and antagonize Wg pathway activity. This suggests that the expression of svb in a discreet domain is resolved at the level of SoxN and Dichaete.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Células Epidérmicas , Epiderme/embriologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Domínios HMG-Box/genética , Domínios HMG-Box/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Modelos Biológicos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Fatores de Transcrição SOX , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteína Wnt1
7.
Dev Biol ; 292(2): 418-29, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16499900

RESUMO

The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment.


Assuntos
Padronização Corporal/genética , Sistema Nervoso Central/embriologia , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Genes de Insetos , Organogênese , Animais , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento
8.
Curr Biol ; 14(19): 1694-702, 2004 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-15458640

RESUMO

BACKGROUND: Segmentation of the Drosophila embryo is a classic paradigm for pattern formation during development. The Wnt-1 homolog Wingless (Wg) is a key player in the establishment of a segmentally reiterated pattern of cell type specification. The intrasegmental polarity of this pattern depends on the precise positioning of the Wg signaling source anterior to the Engrailed (En)/Hedgehog (Hh) domain. Proper polarity of epidermal segments requires an asymmetric response to the bidirectional Hh signal: wg is activated in cells anterior to the Hh signaling source and is restricted from cells posterior to this signaling source. RESULTS: Here we report that Midline (Mid) and H15, two highly related T box proteins representing the orthologs of zebrafish hrT and mouse Tbx20, are novel negative regulators of wg transcription and act to break the symmetry of Hh signaling. Loss of mid and H15 results in the symmetric outcome of Hh signaling: the establishment of wg domains anterior and posterior to the signaling source predominantly, but not exclusively, in odd-numbered segments. Accordingly, loss of mid and H15 produces defects that mimic a wg gain-of-function phenotype. Misexpression of mid represses wg and produces a weak/moderate wg loss-of-function phenocopy. Furthermore, we show that loss of mid and H15 results in an anterior expansion of the expression of serrate (ser) in every segment, representing a second instance of target gene repression downstream of Hh signaling in the establishment of segment polarity. CONCLUSIONS: The data we present here indicate that mid and H15 are important components in pattern formation in the ventral epidermis. In odd-numbered abdominal segments, Mid/H15 activity plays an important role in restricting the expression of Wg to a single domain.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Regulação da Expressão Gênica/fisiologia , Proteínas com Domínio T/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Clonagem Molecular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Proteína Jagged-1 , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Serrate-Jagged , Transdução de Sinais/genética , Proteínas com Domínio T/metabolismo , Proteína Wnt1
9.
Development ; 129(18): 4193-203, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12183372

RESUMO

Sox proteins form a family of HMG-box transcription factors related to the mammalian testis determining factor SRY. Sox-mediated modulation of gene expression plays an important role in various developmental contexts. Drosophila SoxNeuro, a putative ortholog of the vertebrate Sox1, Sox2 and Sox3 proteins, is one of the earliest transcription factors to be expressed pan-neuroectodermally. We demonstrate that SoxNeuro is essential for the formation of the neural progenitor cells in central nervous system. We show that loss of function mutations of SoxNeuro are associated with a spatially restricted hypoplasia: neuroblast formation is severely affected in the lateral and intermediate regions of the central nervous system, whereas ventral neuroblast formation is almost normal. We present evidence that a requirement for SoxNeuro in ventral neuroblast formation is masked by a functional redundancy with Dichaete, a second Sox protein whose expression partially overlaps that of SoxNeuro. Genetic interactions of SoxNeuro and the dorsoventral patterning genes ventral nerve chord defective and intermediate neuroblasts defective underlie ventral and intermediate neuroblast formation. Finally, the expression of the Achaete-Scute gene complex suggests that SoxNeuro acts upstream and in parallel with the proneural genes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Sistema Nervoso/embriologia , Neurônios/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/fisiologia , Sequência Conservada , Proteínas de Insetos/genética , Morfogênese , Fatores de Transcrição SOX , Especificidade da Espécie , Células-Tronco/fisiologia , Xenopus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA