Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37649905

RESUMO

Objectives: We sought to determine if persistent innate immune signaling via NFκB occurs in cardiac myocytes in patients with arrhythmogenic cardiomyopathy and if this is associated with myocardial infiltration of pro-inflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NFκB signaling. Background: NFκB signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy by mobilizing CCR2-expressing macrophages which promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with arrhythmogenic cardiomyopathy. Methods: We analyzed myocardium from arrhythmogenic cardiomyopathy patients who died suddenly or required cardiac transplantation. We also analyzed buccal mucosa cells from young subjects with inherited disease alleles. The presence of immunoreactive signal for RelA/p65 in nuclei of cardiac myocytes and buccal cells was used as a reliable indicator of active NFκB signaling. We also counted myocardial CCR2-expressing cells. Results: NFκB signaling was seen in cardiac myocytes in 34 of 36 cases of arrhythmogenic cardiomyopathy but in none of 19 age-matched controls. Cells expressing CCR2 were increased in patient hearts in numbers directly correlated with the number of cardiac myocytes showing NFκB signaling. NFκB signaling also occurred in buccal cells in young subjects with active disease. Conclusions: Patients with clinically active arrhythmogenic cardiomyopathy exhibit persistent innate immune responses in cardiac myocytes and buccal mucosa cells reflecting an inflammatory process that fails to resolve. Such individuals may benefit from anti-inflammatory therapy. CONDENSED ABSTRACT: NFκB signaling in cardiac myocytes causes arrhythmias and myocardial injury in a mouse model of arrhythmogenic cardiomyopathy by mobilizing pro-inflammatory CCR2-expressing macrophages to the heart. Based on these new mechanistic insights, we analyzed hearts of arrhythmogenic cardiomyopathy patients who died suddenly or required cardiac transplantation. We observed active NFκB signaling in cardiac myocytes associated with marked infiltration of CCR2-expressing cells. We also observed NFκB signaling in buccal mucosa cells obtained from young subjects with active disease. Thus, anti-inflammatory therapy may be effective in arrhythmogenic cardiomyopathy. Screening buccal cells may be a reliable way to identify patients most likely to benefit. HIGHLIGHTS: Inflammation likely contributes to the pathogenesis of arrhythmogenic cardiomyopathy but the responsible mechanisms and the roles of specific classes of immune cells remain undefined.NFκB signaling in cardiac myocytes is sufficient to cause disease in a mouse model of arrhythmogenic cardiomyopathy by mobilizing injurious myeloid cells expressing CCR2 to the heart.Here, we provide evidence of persistent NFκB signaling in cardiac myocytes and increased CCR2-expressing cells in hearts of patients with arrhythmogenic cardiomyopathy. We observed a close correlation between the number of cardiac myocytes with active NFκB signaling and the number of CCR2-expressing cells in patient hearts.We also provide evidence of active NFκB signaling in buccal mucosa cells associated with initial onset of disease and/or disease progression in young subjects with arrhythmogenic cardiomyopathy alleles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA