Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352758

RESUMO

Recent studies have identified multiple genetic variants of SEL1L-HRD1 ER-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here we show that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibit motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy (TEM) analysis reveals dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Lastly, loss of Purkinje cells is associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellum of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.

2.
bioRxiv ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38645243

RESUMO

Background and Aims: The intestine plays a key role in metabolism, nutrient and water absorption, and provides both physical and immunological defense against dietary and luminal antigens. The protective mucosal lining in the intestine is a critical component of intestinal barrier that when compromised, can lead to increased permeability, a defining characteristic of inflammatory bowel disease (IBD), among other intestinal diseases. Here, we define a new role for the flavin-containing monooxygenase (FMO) family of enzymes in maintaining a healthy intestinal epithelium. Methods: Using Caenorhabditis elegans we measure intestinal barrier function, actin expression, and intestinal damage response. In mice, we utilize an intestine-specific, tamoxifen- inducible knockout model of the mammalian homolog of Cefmo-2 , Fmo5, and assess histology, mucus barrier thickness, and goblet cell physiology. We also treat mice with the ER chaperone Tauroursodeoxycholic acid (TUDCA). Results: In nematodes, we find Cefmo-2 is necessary and sufficient for intestinal barrier function, intestinal actin expression, and is induced by intestinal damage. In mice, we find striking changes to the intestine within two weeks following Fmo5 disruption. Alterations include sex-dependent changes in colon epithelial histology, goblet cell localization, and mucus barrier formation. These changes are significantly more severe in female mice, mirroring differences observed in IBD patients. Furthermore, we find increased protein folding stress in Fmo5 knockout animals and successfully rescue the severe female phenotype with addition of a chemical ER chaperone. Conclusions: Together, our results identify a highly conserved and novel role for Fmo5 in the mammalian intestine and support a key role for Fmo5 in maintenance of ER/protein homeostasis and proper mucus barrier formation.

3.
JCI Insight ; 8(17)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535424

RESUMO

The growth of skeletal muscle relies on a delicate equilibrium between protein synthesis and degradation; however, how proteostasis is managed in the endoplasmic reticulum (ER) is largely unknown. Here, we report that the SEL1L-HRD1 ER-associated degradation (ERAD) complex, the primary molecular machinery that degrades misfolded proteins in the ER, is vital to maintain postnatal muscle growth and systemic energy balance. Myocyte-specific SEL1L deletion blunts the hypertrophic phase of muscle growth, resulting in a net zero gain of muscle mass during this developmental period and a 30% reduction in overall body growth. In addition, myocyte-specific SEL1L deletion triggered a systemic reprogramming of metabolism characterized by improved glucose sensitivity, enhanced beigeing of adipocytes, and resistance to diet-induced obesity. These effects were partially mediated by the upregulation of the myokine FGF21. These findings highlight the pivotal role of SEL1L-HRD1 ERAD activity in skeletal myocytes for postnatal muscle growth, and its physiological integration in maintaining whole-body energy balance.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/genética , Músculos/metabolismo , Metabolismo Energético , Hipertrofia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA