Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(42): 11199-11204, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973933

RESUMO

Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9-mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.


Assuntos
Sistemas CRISPR-Cas , Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Edição de Genes , Terapia Genética/métodos , Glaucoma de Ângulo Aberto/terapia , Glicoproteínas/genética , Animais , Linhagem Celular , Glaucoma de Ângulo Aberto/genética , Humanos , Técnicas In Vitro , Camundongos
3.
J Clin Invest ; 124(5): 1956-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24691439

RESUMO

Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma.


Assuntos
Dexametasona/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glaucoma de Ângulo Aberto/metabolismo , Glucocorticoides/efeitos adversos , Malha Trabecular/metabolismo , Animais , Antineoplásicos/farmacologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Deleção de Genes , Glaucoma de Ângulo Aberto/induzido quimicamente , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Glaucoma de Ângulo Aberto/prevenção & controle , Glucocorticoides/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Fenilbutiratos/farmacologia , Malha Trabecular/patologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
4.
Hum Mol Genet ; 23(1): 40-51, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943788

RESUMO

Ciliopathies are a group of heterogeneous disorders associated with ciliary dysfunction. Diseases in this group display considerable phenotypic variation within individual syndromes and overlapping phenotypes among clinically distinct disorders. Particularly, mutations in CEP290 cause phenotypically diverse ciliopathies ranging from isolated retinal degeneration, nephronophthisis and Joubert syndrome, to the neonatal lethal Meckel-Gruber syndrome. However, the underlying mechanisms of the variable expressivity in ciliopathies are not well understood. Here, we show that components of the BBSome, a protein complex composed of seven Bardet-Biedl syndrome (BBS) proteins, physically and genetically interact with CEP290 and modulate the expression of disease phenotypes caused by CEP290 mutations. The BBSome binds to the N-terminal region of CEP290 through BBS4 and co-localizes with CEP290 to the transition zone (TZ) of primary cilia and centriolar satellites in ciliated cells, as well as to the connecting cilium in photoreceptor cells. Although CEP290 still localizes to the TZ and connecting cilium in BBSome-depleted cells, its localization to centriolar satellites is disrupted and CEP290 appears to disperse throughout the cytoplasm in BBSome-depleted cells. Genetic interactions were tested using Cep290(rd16)- and Bbs4-null mutant mouse lines. Additional loss of Bbs4 alleles in Cep290(rd16/rd16) mice results in increased body weight and accelerated photoreceptor degeneration compared with mice without Bbs4 mutations. Furthermore, double-heterozygous mice (Cep290(+/rd16);Bbs4(+/-)) have increased body weight compared with single-heterozygous animals. Our data indicate that genetic interactions between BBSome components and CEP290 could underlie the variable expression and overlapping phenotypes of ciliopathies caused by CEP290 mutations.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Síndrome de Bardet-Biedl/genética , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Retina/patologia , Animais , Síndrome de Bardet-Biedl/metabolismo , Sítios de Ligação , Peso Corporal , Proteínas de Ciclo Celular , Linhagem Celular , Centríolos/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Células Fotorreceptoras/metabolismo , Retina/metabolismo
5.
PLoS One ; 8(3): e59101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554981

RESUMO

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, hypogenitalism and renal defects. Recent findings have associated the etiology of the disease with cilia, and BBS proteins have been implicated in trafficking various ciliary cargo proteins. To date, 17 different genes have been reported for BBS among which BBS1 is the most common cause of the disease followed by BBS10, and BBS4. A murine model of Bbs4 is known to phenocopy most of the human BBS phenotypes, and it is being used as a BBS disease model. To better understand the in vivo localization, cellular function, and interaction of BBS4 with other proteins, we generated a transgenic BBS4 mouse expressing the human BBS4 gene under control of the beta actin promoter. The transgene is expressed in various tissues including brain, eye, testis, heart, kidney, and adipose tissue. These mice were further bred to express the transgene in Bbs4 null mice, and their phenotype was characterized. Here we report that despite tissue specific variable expression of the transgene, human BBS4 was able to complement the deficiency of Bbs4 and rescue all the BBS phenotypes in the Bbs4 null mice. These results provide an encouraging prospective for gene therapy for BBS related phenotypes and potentially for other ciliopathies.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Expressão Gênica , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Animais , Cílios/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Hidrocefalia/genética , Infertilidade Masculina/genética , Rim/inervação , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos , Obesidade/genética , Doenças Retinianas/genética , Sistema Nervoso Simpático/metabolismo , Testículo/metabolismo , Transgenes
6.
J Cell Sci ; 126(Pt 11): 2372-80, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23572516

RESUMO

Bardet-Biedl Syndrome (BBS) is a pleiotropic and genetically heterozygous disorder caused independently by numerous genes (BBS1-BBS17). Seven highly conserved BBS proteins (BBS1, 2, 4, 5, 7, 8 and 9) form a complex known as the BBSome, which functions in ciliary membrane biogenesis. BBS7 is both a unique subunit of the BBSome and displays direct physical interaction with a second BBS complex, the BBS chaperonin complex. To examine the in vivo function of BBS7, we generated Bbs7 knockout mice. Bbs7(-/-) mice show similar phenotypes to other BBS gene mutant mice including retinal degeneration, obesity, ventriculomegaly and male infertility characterized by abnormal spermatozoa flagellar axonemes. Using tissues from Bbs7(-/-) mice, we show that BBS7 is required for BBSome formation, and that BBS7 and BBS2 depend on each other for protein stability. Although the BBSome serves as a coat complex for ciliary membrane proteins, BBS7 is not required for the localization of ciliary membrane proteins polycystin-1, polycystin-2, or bitter taste receptors, but absence of BBS7 leads to abnormal accumulation of the dopamine D1 receptor to the ciliary membrane, indicating that BBS7 is involved in specific membrane protein localization to cilia.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/patologia , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Complexos Multiproteicos/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
7.
Nat Med ; 18(12): 1797-804, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160237

RESUMO

Hydrocephalus is a common neurological disorder that leads to expansion of the cerebral ventricles and is associated with a high rate of morbidity and mortality. Most neonatal cases are of unknown etiology and are likely to have complex inheritance involving multiple genes and environmental factors. Identifying molecular mechanisms for neonatal hydrocephalus and developing noninvasive treatment modalities are high priorities. Here we use a hydrocephalic mouse model of the human ciliopathy Bardet-Biedl Syndrome (BBS) and identify a role for neural progenitors in the pathogenesis of neonatal hydrocephalus. We found that hydrocephalus in this mouse model is caused by aberrant platelet-derived growth factor receptor α (PDGFR-α) signaling, resulting in increased apoptosis and impaired proliferation of chondroitin sulfate proteoglycan 4 (also known as neuron-glial antigen 2 or NG2)(+)PDGFR-α(+) neural progenitors. Targeting this pathway with lithium treatment rescued NG2(+)PDGFR-α(+) progenitor cell proliferation in BBS mutant mice, reducing their ventricular volume. Our findings demonstrate that neural progenitors are crucial in the pathogenesis of neonatal hydrocephalus, and we identify new therapeutic targets for this common neurological disorder.


Assuntos
Antígenos/metabolismo , Apoptose/fisiologia , Síndrome de Bardet-Biedl/patologia , Hidrocefalia/etiologia , Células-Tronco Neurais/citologia , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Bromodesoxiuridina , Proliferação de Células/efeitos dos fármacos , Primers do DNA/genética , Feminino , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Lítio/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Mutantes , Células-Tronco Neurais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
8.
Fluids Barriers CNS ; 9(1): 22, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23046663

RESUMO

BACKGROUND: Hydrocephalus is a heterogeneous disorder with multiple etiologies that are not yet fully understood. Animal models have implicated dysfunctional cilia of the ependyma and choroid plexus in the development of the disorder. In this report, we sought to determine the origin of the ventriculomegaly in four Bardet Biedl syndrome (BBS) mutant mouse strains as models of a ciliopathy. METHODS: Evans Blue dye was injected into the lateral ventricle of wild- type and BBS mutant mice to determine whether obstruction of intra- or extra-ventricular CSF flow contributed to ventriculomegaly. Transmission electron microscopy (TEM) was used to examine the ultrastructure of the choroid plexus, subfornical organ (SFO), subcommisural organ (SCO), and ventricular ependyma to evaluate their ultrastructure and the morphology of their primary and motile cilia. RESULTS AND DISCUSSION: No obstruction of intra- or extra-ventricular CSF flow was observed, implying a communicating form of hydrocephalus in BBS mutant mice. TEM analyses of the mutants showed no evidence of choroidal papillomas or breakdown of the blood:CSF barrier. In contrast, structural defects were observed in a subpopulation of cilia lining the choroid plexus, SFO, and ventricular ependyma. These included disruptions of the microtubular structure of the axoneme and the presence of electron-dense vesicular-like material along the ciliary shaft and at the tips of cilia. CONCLUSIONS: Abnormalities in cilia structure and function have the potential to influence ciliary intraflagellar transport (IFT), cilia maintenance, protein trafficking, and regulation of CSF production. Ciliary structural defects are the only consistent pathological features associated with CSF-related structures in BBS mutant mice. These defects are observed from an early age, and may contribute to the underlying pathophysiology of ventriculomegaly.

9.
Invest Ophthalmol Vis Sci ; 53(3): 1557-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22328638

RESUMO

PURPOSE: Mutations in the myocilin gene (MYOC) are the most common known genetic cause of primary open-angle glaucoma (POAG). The purpose of this study was to determine whether topical ocular sodium 4-phenylbutyrate (PBA) treatment rescues glaucoma phenotypes in a mouse model of myocilin-associated glaucoma (Tg-MYOC(Y437H) mice). METHODS: Tg-MYOC(Y437H) mice were treated with PBA eye drops (n = 10) or sterile PBS (n = 8) twice daily for 5 months. Long-term safety and effectiveness of topical PBA (0.2%) on glaucoma phenotypes were examined by measuring intraocular pressure (IOP) and pattern ERG (PERG), performing slit lamp evaluation of the anterior chamber, analyzing histologic sections of the anterior segment, and comparing myocilin levels in the aqueous humor and trabecular meshwork of Tg-MYOC(Y437H) mice. RESULTS: Tg-MYOC(Y437H) mice developed elevated IOP at 3 months of age when compared with wild-type (WT) littermates (n = 24; P < 0.0001). Topical PBA did not alter IOP in WT mice. However, it significantly reduced elevated IOP in Tg-MYOC(Y437H) mice to the level of WT mice. Topical PBA-treated Tg-MYOC(Y437H) mice also preserved PERG amplitudes compared with vehicle-treated Tg-MYOC(Y437H) mice. No structural abnormalities were observed in the anterior chamber of PBA-treated WT and Tg-MYOC(Y437H) mice. Analysis of the myocilin in the aqueous humor and TM revealed that PBA significantly improved the secretion of myocilin and reduced myocilin accumulation as well as endoplasmic reticulum (ER) stress in the TM of Tg-MYOC(Y437H) mice. Furthermore, topical PBA reduced IOP elevated by induction of ER stress via tunicamycin injections in WT mice. CONCLUSIONS: Topical ocular PBA reduces glaucomatous phenotypes in Tg-MYOC(Y437H) mice, most likely by reducing myocilin accumulation and ER stress in the TM. Topical ocular PBA could become a novel treatment for POAG patients with myocilin mutations.


Assuntos
Glaucoma de Ângulo Aberto/tratamento farmacológico , Soluções Oftálmicas/administração & dosagem , Fenilbutiratos/administração & dosagem , Administração Oftálmica , Animais , Antibacterianos/farmacologia , Humor Aquoso/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Olho/efeitos dos fármacos , Proteínas do Olho/metabolismo , Feminino , Glaucoma de Ângulo Aberto/metabolismo , Glicoproteínas/metabolismo , Humanos , Imuno-Histoquímica , Pressão Intraocular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Hipertensão Ocular/tratamento farmacológico , Tunicamicina/farmacologia
10.
Hum Mol Genet ; 21(9): 1945-53, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22228099

RESUMO

There are numerous genes for which loss-of-function mutations do not produce apparent phenotypes even though statistically significant quantitative changes to biological pathways are observed. To evaluate the biological meaning of small effects is challenging. Bardet-Biedl syndrome (BBS) is a heterogeneous autosomal recessive disorder characterized by obesity, retinopathy, polydactyly, renal malformations, learning disabilities and hypogenitalism, as well as secondary phenotypes including diabetes and hypertension. BBS knockout mice recapitulate most human phenotypes including obesity, retinal degeneration and male infertility. However, BBS knockout mice do not develop polydacyly. Here we showed that the loss of BBS genes in mice result in accumulation of Smoothened and Patched 1 in cilia and have a decreased Shh response. Knockout of Bbs7 combined with a hypomorphic Ift88 allele (orpk as a model for Shh dysfuction) results in embryonic lethality with e12.5 embryos having exencephaly, pericardial edema, cleft palate and abnormal limb development, phenotypes not observed in Bbs7(-/-) mice. Our results indicate that BBS genes modulate Shh pathway activity and interact genetically with the intraflagellar transport (IFT) pathway to play a role in mammalian development. This study illustrates an effective approach to appreciate the biological significance of a small effect.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Animais , Células Cultivadas , Cílios/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptores Patched , Receptor Patched-1 , Fenótipo , Gravidez , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Receptor Smoothened , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(51): 20678-83, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139371

RESUMO

Bardet-Biedl syndrome (BBS) is a heterogeneous disorder characterized by obesity, retinopathy, polydactyly, and congenital anomalies. The incidence of hypertension and diabetes are also increased in BBS patients. Mutation of 16 genes independently causes BBS, and seven BBS proteins form the BBSome that promotes ciliary membrane elongation. BBS3 (ARL6), an ADP ribosylation factor-like small GTPase, is not part of the BBSome complex. The in vivo function of BBS3 is largely unknown. Here we developed a Bbs3 knockout model and demonstrate that Bbs3(-/-) mice develop BBS-associated phenotypes, including retinal degeneration, male infertility, and increased body fat. Interestingly, Bbs3(-/-) mice develop some unique phenotypes not seen in other BBS knockout models: no overt obesity, severe hydrocephalus, and elevated blood pressure (shared by some but not all BBS gene knockout mice). We found that endogenous BBS3 and the BBSome physically interact and depend on each other for their ciliary localization. This finding explains the phenotypic similarity between Bbs3(-/-) mice and BBSome subunit knockout mice. Loss of Bbs3 does not affect BBSome formation but disrupts normal localization of melanin concentrating hormone receptor 1 to ciliary membranes and affects retrograde transport of Smoothened inside cilia. We also show that the endogenous BBSome and BBS3 associate with membranes and the membrane association of the BBSome and BBS3 are not interdependent. Differences between BBS mouse models suggest nonoverlapping functions to individual BBS protein.


Assuntos
Fatores de Ribosilação do ADP/genética , Síndrome de Bardet-Biedl/genética , Mutação , Fatores de Ribosilação do ADP/fisiologia , Animais , Encéfalo/metabolismo , Éxons , Flagelos/metabolismo , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Obesidade/metabolismo , Fenótipo , Transporte Proteico , Espermatozoides/fisiologia
12.
PLoS Genet ; 7(11): e1002358, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072986

RESUMO

Many signaling proteins including G protein-coupled receptors localize to primary cilia, regulating cellular processes including differentiation, proliferation, organogenesis, and tumorigenesis. Bardet-Biedl Syndrome (BBS) proteins are involved in maintaining ciliary function by mediating protein trafficking to the cilia. However, the mechanisms governing ciliary trafficking by BBS proteins are not well understood. Here, we show that a novel protein, Leucine-zipper transcription factor-like 1 (LZTFL1), interacts with a BBS protein complex known as the BBSome and regulates ciliary trafficking of this complex. We also show that all BBSome subunits and BBS3 (also known as ARL6) are required for BBSome ciliary entry and that reduction of LZTFL1 restores BBSome trafficking to cilia in BBS3 and BBS5 depleted cells. Finally, we found that BBS proteins and LZTFL1 regulate ciliary trafficking of hedgehog signal transducer, Smoothened. Our findings suggest that LZTFL1 is an important regulator of BBSome ciliary trafficking and hedgehog signaling.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Cílios/genética , Cílios/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened , Fatores de Transcrição/genética
13.
J Clin Invest ; 121(9): 3542-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21821918

RESUMO

Mutations in myocilin (MYOC) are the most common genetic cause of primary open angle glaucoma (POAG), but the mechanisms underlying MYOC-associated glaucoma are not fully understood. Here, we report the development of a transgenic mouse model of POAG caused by the Y437H MYOC mutation; the mice are referred to herein as Tg-MYOC(Y437H) mice. Analysis of adult Tg-MYOC(Y437H) mice, which we showed express human MYOC containing the Y437H mutation within relevant eye tissues, revealed that they display glaucoma phenotypes (i.e., elevated intraocular pressure [IOP], retinal ganglion cell death, and axonal degeneration) closely resembling those seen in patients with POAG caused by the Y437H MYOC mutation. Mutant myocilin was not secreted into the aqueous humor but accumulated in the ER of the trabecular meshwork (TM), thereby inducing ER stress in the TM of Tg-MYOC(Y437H) mice. Furthermore, chronic and persistent ER stress was found to be associated with TM cell death and elevation of IOP in Tg-MYOC(Y437H) mice. Reduction of ER stress with a chemical chaperone, phenylbutyric acid (PBA), prevented glaucoma phenotypes in Tg-MYOC(Y437H) mice by promoting the secretion of mutant myocilin in the aqueous humor and by decreasing intracellular accumulation of myocilin in the ER, thus preventing TM cell death. These results demonstrate that ER stress is linked to the pathogenesis of POAG and may be a target for treatment in human patients.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/fisiopatologia , Fenilbutiratos/farmacologia , Fenilbutiratos/uso terapêutico , Estresse Fisiológico , Animais , Apoptose/fisiologia , Células Cultivadas , Proteínas do Citoesqueleto/genética , Retículo Endoplasmático/patologia , Proteínas do Olho/genética , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Glicoproteínas/genética , Humanos , Pressão Intraocular , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Transgenes , Resposta a Proteínas não Dobradas
14.
PLoS Genet ; 6(3): e1000884, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20333246

RESUMO

Bardet-Biedl Syndrome (BBS) is a heterogeneous syndromic form of retinal degeneration. We have identified a novel transcript of a known BBS gene, BBS3 (ARL6), which includes an additional exon. This transcript, BBS3L, is evolutionally conserved and is expressed predominantly in the eye, suggesting a specialized role in vision. Using antisense oligonucleotide knockdown in zebrafish, we previously demonstrated that bbs3 knockdown results in the cardinal features of BBS in zebrafish, including defects to the ciliated Kupffer's Vesicle and delayed retrograde melanosome transport. Unlike bbs3, knockdown of bbs3L does not result in Kupffer's Vesicle or melanosome transport defects, rather its knockdown leads to impaired visual function and mislocalization of the photopigment green cone opsin. Moreover, BBS3L RNA, but not BBS3 RNA, is sufficient to rescue both the vision defect as well as green opsin localization in the zebrafish retina. In order to demonstrate a role for Bbs3L function in the mammalian eye, we generated a Bbs3L-null mouse that presents with disruption of the normal photoreceptor architecture. Bbs3L-null mice lack key features of previously published Bbs-null mice, including obesity. These data demonstrate that the BBS3L transcript is required for proper retinal function and organization.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Visão Ocular , Proteínas de Peixe-Zebra/metabolismo , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Sequência de Aminoácidos , Animais , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Síndrome de Bardet-Biedl/fisiopatologia , Anormalidades do Olho/complicações , Anormalidades do Olho/patologia , Anormalidades do Olho/fisiopatologia , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Gânglios/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Opsinas de Bastonetes/metabolismo , Visão Ocular/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
15.
Hum Mol Genet ; 18(7): 1323-31, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19150989

RESUMO

Obesity is a major public health problem in most developed countries and a major risk factor for diabetes and cardiovascular disease. Emerging evidence indicates that ciliary dysfunction can contribute to human obesity but the underlying molecular and cellular mechanisms are unknown. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous human obesity syndrome associated with ciliary dysfunction. BBS proteins are thought to play a role in cilia function and intracellular protein/vesicle trafficking. Here, we show that BBS proteins are required for leptin receptor (LepR) signaling in the hypothalamus. We found that Bbs2(-/-), Bbs4(-/-) and Bbs6(-/-) mice are resistant to the action of leptin to reduce body weight and food intake regardless of serum leptin levels and obesity. In addition, activation of hypothalamic STAT3 by leptin is significantly decreased in Bbs2(-/-), Bbs4(-/-) and Bbs6(-/-) mice. In contrast, downstream melanocortin receptor signaling is unaffected, indicating that LepR signaling is specifically impaired in Bbs2(-/-), Bbs4(-/-) and Bbs6(-/-) mice. Impaired LepR signaling in BBS mice was associated with decreased Pomc gene expression. Furthermore, we found that BBS1 protein physically interacts with the LepR and that loss of BBS proteins perturbs LepR trafficking. Our data indicate that BBS proteins mediate LepR trafficking and that impaired LepR signaling underlies energy imbalance in BBS. These findings represent a novel mechanism for leptin resistance and obesity.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais , Animais , Síndrome de Bardet-Biedl/sangue , Restrição Calórica , Linhagem Celular , Chaperoninas do Grupo II , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/sangue , Melanocortinas/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Pró-Opiomelanocortina/metabolismo , Ligação Proteica , Transporte Proteico
16.
Proc Natl Acad Sci U S A ; 105(9): 3380-5, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18299575

RESUMO

Mutations in a group of genes that contribute to ciliary function cause Bardet-Biedl syndrome (BBS). Most studies of BBS have focused on primary, sensory cilia. Here, we asked whether loss of BBS proteins would also affect motile cilia lining the respiratory tract. We found that BBS genes were expressed in human airway epithelia, and BBS2 and BBS4 localized to cellular structures associated with motile cilia. Although BBS proteins were not required for ciliogenesis, their loss caused structural defects in a fraction of cilia covering mouse airway epithelia. The most common abnormality was bulges filled with vesicles near the tips of cilia. We discovered this same misshapen appearance in airway cilia from Bbs1, Bbs2, Bbs4, and Bbs6 mutant mice. The structural abnormalities were accompanied by functional defects; ciliary beat frequency was reduced in Bbs mutant mice. Previous reports suggested BBS might increase the incidence of asthma. However, compared with wild-type controls, neither airway hyperresponsiveness nor inflammation increased in Bbs2(-/-) or Bbs4(-/-) mice immunized with ovalbumin. Instead, these animals were partially protected from airway hyperresponsiveness. These results emphasize the role of BBS proteins in both the structure and function of motile cilia. They also invite additional scrutiny of motile cilia dysfunction in patients with this disease.


Assuntos
Síndrome de Bardet-Biedl/patologia , Cílios/patologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Mucosa Respiratória/patologia , Animais , Forma Celular , Cílios/química , Cílios/fisiologia , Chaperoninas do Grupo II , Humanos , Hipersensibilidade/etiologia , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética
17.
Am J Hum Genet ; 72(2): 429-37, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12524598

RESUMO

Bardet-Biedl syndrome (BBS) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. Patients with BBS are also at increased risk for diabetes mellitus, hypertension, and congenital heart disease. BBS is known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although these loci were all mapped on the basis of an autosomal recessive mode of inheritance, it has recently been suggested-on the basis of mutation analysis of the identified BBS2, BBS4, and BBS6 genes-that BBS displays a complex mode of inheritance in which, in some families, three mutations at two loci are necessary to manifest the disease phenotype. We recently identified BBS1, the gene most commonly involved in Bardet-Biedl syndrome. The identification of this gene allows for further evaluation of complex inheritance. In the present study we evaluate the involvement of the BBS1 gene in a cohort of 129 probands with BBS and report 10 novel BBS1 mutations. We demonstrate that a common BBS1 missense mutation accounts for approximately 80% of all BBS1 mutations and is found on a similar genetic background across populations. We show that the BBS1 gene is highly conserved between mice and humans. Finally, we demonstrate that BBS1 is inherited in an autosomal recessive manner and is rarely, if ever, involved in complex inheritance.


Assuntos
Síndrome de Bardet-Biedl/genética , Proteínas/genética , Sequência de Aminoácidos , Animais , Cromossomos Humanos Par 11 , Estudos de Coortes , Sequência Conservada , Evolução Molecular , Genes Recessivos , Haplótipos , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Mutação , Linhagem , Filogenia , Proteínas/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA