Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Chem ; 405(3): 189-201, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37677740

RESUMO

The exact mechanisms involved in flaviviruses virions' release and the specific secretion of viral proteins, such as the Non Structural protein-1 (NS1), are still unclear. While these processes might involve vesicular transport to the cell membrane, NS1 from some flaviviruses was shown to participate in viral assembly and release. Here, we assessed the effect of the Zika virus (ZIKV) NS1 expression on the cellular proteome to identify trafficking-related targets that may be altered in the presence of the viral protein. We detected an increase in the synaptotagmin-9 (SYT9) secretory protein, which participates in the intracellular transport of protein-laden vesicles. We confirmed the effect of NS1 on SYT9 levels by transfection models while also detecting a significant subcellular redistribution of SYT9. We found that ZIKV prM-Env proteins, required for the viral particle release, also increased SYT9 levels and changed its localization. Finally, we demonstrated that ZIKV cellular infection raises SYT9 levels and promotes changes in its subcellular localization, together with a co-distribution with both Env and NS1. Altogether, the data suggest SYT9's implication in the vesicular transport of viral proteins or virions during ZIKV infection, showing for the first time the association of synaptotagmins with the flavivirus' life cycle.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Proteoma , Sinaptotagminas , Proteínas Virais
2.
Arch Virol ; 168(4): 115, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943525

RESUMO

The consequences of Zika virus (ZIKV) infections were limited to sporadic mild diseases until almost a decade ago, when epidemic outbreaks took place, with quick spread into the Americas. Simultaneously, novel severe neurological manifestations of ZIKV infections were identified, including congenital microcephaly. However, why the epidemic strains behave differently is not yet completely understood, and many questions remain about the actual significance of genetic variations in the epidemiology and biology of ZIKV. In this study, we analysed a large number of viral sequences to identify genes with different levels of variability and patterns of genomic variations that could be associated with ZIKV diversity. We compared numerous epidemic strains with pre-epidemic strains, using the BWA-mem algorithm, and we also examined specific variations among the epidemic ZIKV strains derived from microcephaly cases. We identified several viral genes with dissimilar mutation rates among the ZIKV strain groups and novel protein variation profiles that might be associated with epidemiological particularities. Finally, we assessed the impact of the detected changes on the structure and stability of the NS1, NS5, and E proteins using the I-TASSER, trRosetta, and RaptorX modelling algorithms, and we found some interesting variations that might help to explain the heterogeneous features of the diverse ZIKA strains. This work contributes to the identification of genetic differences in the ZIKV genome that might have a phenotypic impact, providing a basis for future experimental analysis to elucidate the genetic causes of the recent ZIKV emergency.


Assuntos
Epidemias , Microcefalia , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Infecção por Zika virus/epidemiologia , Microcefalia/epidemiologia , Surtos de Doenças
3.
BMC Cancer ; 22(1): 1015, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153517

RESUMO

BACKGROUND: Oncogenic Human Papillomaviruses (HPVs) base their transforming potential on the action of both E6 and E7 viral oncoproteins, which perform cooperative or antagonistic actions and thus interfere with a variety of relevant cellular targets. Among them, the expression of some PDZ-containing polarity proteins, as DLG1 and hScrib, is altered during the HPV life cycle and the consequent malignant transformation. Together with the well-established interference of E6 with PDZ proteins, we have recently shown that E7 viral oncoprotein is also responsible for the changes in abundance and localization of DLG1 observed in HPV-associated lesions. Given that the mechanisms involved remained only partially understood, we here thoroughly analyse the contribution of a crucial E7 post-translational modification: its CKII-dependent phosphorylation. Moreover, we extended our studies to hScrib, in order to investigate possible conserved regulatory events among diverse PDZ targets of HPV. METHODS: We have acutely analysed the expression of DLG1 and hScrib in restrictive conditions for E7 phosphorylation by CKII in epithelial culture cells by western blot and confocal fluorescence microscopy. We made use of genome-edited HPV-positive cells, specific inhibitors of CKII activity and transient expression of the viral oncoproteins, including a mutant version of E7. RESULTS: We here demonstrate that the functional phosphorylation of E7 oncoprotein by the CKII cellular kinase, a key regulatory event for its activities, is also crucial to counteract the E6-mediated degradation of the PDZ-polarity protein DLG1 and to promote its subcellular redistribution. Moreover, we show that the CKII-dependent phosphorylation of E7 is able to control the expression of another PDZ target of HPV: hScrib. Remarkably, we found this is a shared feature among different oncogenic HPV types, suggesting a common path towards viral pathogenesis. CONCLUSIONS: The present study sheds light into the mechanisms behind the misexpression of PDZ-polarity proteins during HPV infections. Our findings stress the relevance of the CKII-mediated regulation of E7 activities, providing novel insights into the joint action of HPV oncoproteins and further indicating a conserved and most likely crucial mechanism during the viral life cycle and the associated transformation.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Transformação Celular Neoplásica , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Processamento de Proteína Pós-Traducional
4.
Virus Res ; 304: 198544, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400226

RESUMO

Zika Virus (ZIKV) is an RNA virus that belongs to the Flavivirus (FV) genus. In the last years, several unique characteristics of ZIKV among FV have been revealed, as the multiple routes of transmission and its ability to reach different human tissues, including the central nervous system. Thus, one of the most intriguing features of ZIKV biology is its ability to cross diverse complex biological barriers. The main aim of this study is to contribute to the understanding of the still unclear mechanisms behind this viral activity. We investigated an African strain and two South American ZIKV isolates belonging to the Asian lineage, in order to characterize possible differences regarding their ability to disturb intercellular junctions. The Asian isolates correspond to an imported (Venezuelan) and an autochthonous (Argentinian) ZIKV strain for which there is still no data available. We focused on occludin and DLG1 expression as markers of tight and adherent junctions, respectively. For this, we applied a quantitative immunofluorescence assay that can ascertain alterations in the cell junction proteins expression in the infected cells. Our findings indicated that the different ZIKV strains were able to reduce the levels of both polarity proteins without altering their overall cell distribution. Moreover, the grade of this effect was strain-dependent, being the DLG1 reduction higher for the African and Asian Venezuelan isolates and, on the contrary, occludin down-regulation was more noticeable for the Argentinian strain. Interestingly, among both junction proteins the viral infection caused a relative larger reduction in DLG1 expression for all viruses, suggesting DLG1 may be of particular relevance for ZIKV infections. Taken together, this study contributes to the knowledge of the biological mechanisms involved in ZIKV cytopathogenesis, with a special focus on regional isolates.


Assuntos
Proteína 1 Homóloga a Discs-Large , Ocludina , Infecção por Zika virus , Proteína 1 Homóloga a Discs-Large/genética , Humanos , Ocludina/genética , Zika virus
5.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33731457

RESUMO

Human papillomavirus (HPV) infection is a multi-step process that implies complex interactions of the viral particles with cellular proteins. The HPV capsid includes the two structural proteins L1 and L2, that play crucial roles on infectious viral entry. L2 is particularly relevant for the intracellular trafficking of the viral DNA towards the nucleus. Here, using proteomic studies we identified CCT proteins as novel interaction partners of HPV-16 L2. The CCT multimeric complex is an essential chaperonin which interacts with a large number of protein targets. We analysed the binding of different components of the CCT complex to L2. We confirmed the interaction of this structural viral protein with the CCT subunit 3 (CCT3) and we found that this interaction requires the N-terminal region of L2. Defects in HPV-16 pseudoviral particle (PsVs) infection were revealed by siRNA-mediated knockdown of some CCT subunits. While a substantial drop in the viral infection was associated with the ablation of CCT component 2, even more pronounced effects on infectivity were observed upon depletion of CCT component 3. Using confocal immunofluorescence assays, CCT3 co-localised with HPV PsVs at early times after infection, with L2 being required for this to occur. Further analysis showed the colocalization of several other subunits of CCT with the PsVs. Moreover, we observed a defect in capsid uncoating and a change in PsVs intracellular normal processing when ablating CCT3. Taken together, these studies demonstrate the importance of CCT chaperonin during HPV infectious entry.ImportanceSeveral of the mechanisms that function during the infection of target cells by HPV particles have been previously described. However, many aspects of this process remain unknown. In particular, the role of cellular proteins functioning as molecular chaperones during HPV infections has been only partially investigated. To the best of our knowledge, we describe here for the first time, a requirement of the CCT chaperonin for HPV infection. The role of this cellular complex seems to be determined by the binding of its component 3 to the viral structural protein L2. However, CCT's effect on HPV infection most probably comprises the whole chaperonin complex. Altogether, these studies define an important role for the CCT chaperonin in the processing and intracellular trafficking of HPV particles and in subsequent viral infectious entry.

6.
BMC Cancer ; 20(1): 293, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264889

RESUMO

BACKGROUND: Persistent infection with high-risk Human Papillomavirus (HPVs) is associated with the development of cervical cancer. The transforming capacity of these viruses relies on the cooperative action of the E6 and E7 viral oncoproteins. Among the oncogenic activities of E6, the interaction and interference with cell polarity PDZ proteins have been well established. One of the most characterized PDZ targets of HPV E6 is human Disc large 1 (DLG1), a scaffolding protein involved in the control of cell polarity and proliferation. Interestingly, in cervical squamous intraepithelial lesions, alterations in DLG1 expression were observed in association to tumour progression. Moreover, the expression of both HPV E6 and E7 proteins may be responsible for the changes in DLG1 abundance and cell localization observed in the HPV-associated lesions. METHODS: Due to the relevance of DLG1 deregulation in tumour development, we have performed an in-depth investigation of the expression of DLG1 in the presence of the HPV oncoproteins in epithelial cultured cells. The effects of HPV E6 and E7 proteins on DLG1 abundance and subcellular localization were assessed by western blot and confocal fluorescence microscopy, respectively. RESULTS: We demonstrated that the relative abundance of HPV-18 E6 and DLG1 is a key factor that contributes to defining the expression abundance of both proteins. We also show here that a high expression level of DLG1 may negatively affect HPV-18 E6 nuclear expression. Moreover, the co-expression of HPV-18 E6 and E7 produces a striking effect on DLG1 subcellular localization and a co-distribution in the cytoplasmic region. Interestingly, HPV-18 E7 is also able to increase DLG1 levels, likely by rescuing it from the E6-mediated proteasomal degradation. CONCLUSIONS: In general, the data suggest that HPV-18 E6 and E7 may have opposing activities in regards to the regulation of DLG1 levels and may cooperatively contribute to its subcellular redistribution in the HPV context. These findings constitute a step forward in understanding the differential expression of DLG1 during tumour progression in an HPV-associated model.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína 1 Homóloga a Discs-Large/genética , Células Epiteliais/virologia , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Células A549 , Polaridade Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/metabolismo
7.
Curr Opin Cell Biol ; 59: 112-120, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128386

RESUMO

To infect mammalian cells, all infectious viruses must cross a common set of biophysical membrane barriers to gain access to the cell. The virus capsid proteins attach to a host cell, become endocytosed, and traffic the viral genome to sites of replication. To do this they must interact with the membrane-confined organelles that control endocytosis, endosomal sorting, processing, and degradation of biological molecules. In this review, we highlight some recent advances in our understanding of the mechanisms that small non-enveloped DNA tumor viruses, such as Human Papillomavirus (HPV) and Polyomaviruses (PyV) employ to attain infectious entry. These viruses exploit different pathways to mediate entry, uncoating and subsequent transport to the nucleus via the Trans Golgi Network (TGN) or the Endoplasmic Reticulum (ER). Understanding how the viral capsid proteins interact with cellular membranous organelles sheds light on the novel ways by which viruses can hi-jack endocytic transport pathways and provides unique insights into how the highly complex machinery controlling cargo fate determination is regulated within the cell.


Assuntos
Membrana Celular/metabolismo , Vírus de DNA Tumorais/fisiologia , Internalização do Vírus , Animais , Endossomos/metabolismo , Humanos , Transporte Proteico , Rede trans-Golgi
8.
Viruses ; 9(12)2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168728

RESUMO

Human T cell leukemia virus (HTLV)-1 Tax (Tax) protein is very important in viral replication and cell transformation. Tax localizes in the nucleus and cytoplasm in association with organelles. Some activities of Tax depend on interactions with PDZ (PSD-95/Discs Large/Z0-1) domain-containing proteins such as Discs large protein 1 (DLG1) which is involved in cell polarity and proliferation. The DLG1 interaction results in a cytoplasmic co-localization pattern resembling vesicular aggregates, the nature of which is still unknown. To further explore the role of PDZ proteins in HTLV-1 cell transformation, we deeply investigated the Tax-DLG1 association. By fluorescence resonance energy transfer (FRET), we detected, for the first time, the direct binding of Tax to DLG1 within the cell. We showed that the interaction specifically affects the cellular distribution of not only DLG1, but also Tax. After studying different cell structures, we demonstrated that the aggregates distribute into the Golgi apparatus in spatial association with the microtubule-organizing center (MTOC). This study contributes to understand the biological significance of Tax-PDZ interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas de Membrana/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Núcleo Celular/metabolismo , Transformação Celular Viral , Citoplasma/metabolismo , Proteína 1 Homóloga a Discs-Large , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Produtos do Gene tax/genética , Complexo de Golgi/metabolismo , Células HEK293 , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Células Jurkat , Proteínas de Membrana/genética , Microscopia , Agregados Proteicos , Transporte Proteico , Replicação Viral
9.
Exp Mol Pathol ; 102(1): 65-69, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28040505

RESUMO

Human Discs large tumour suppressor (DLG1) participates in regulating cell polarity and proliferation, suggesting an important connection between epithelial organization and cellular growth control. However, it was demonstrated that DLG1 could acquire oncogenic attributes in some specific contexts. In this work, we evaluated the expression of DLG1 and its contribution to the progress of cervical lesions in order to investigate a potential role of this polarity protein in human oncogenic processes. We analyzed cervical biopsies from women with low-grade squamous intraepithelial lesion (LSIL) diagnosis (n=30), for DLG1 expression by immunohistochemistry. These results were correlated with the clinical monitoring of the patients during a 24-month follow-up period. Our data indicate that while all LSIL patients with a DLG1 staining pattern similar to normal tissues are significantly more likely to regress (n=23, Pattern I), all LSIL biopsy specimens showing a diffuse and intense DLG1 staining likely progress to high-grade lesions (n=4, Pattern II). Finally, all persistent LSIL analyzed showed an undetermined DLG1 staining, with a diffuse distribution without a strong intensity (n=3, Pattern III). We found a significant association between the expression pattern of DLG1 and the evolution of the lesion (p<0.00001). This work contributes to the knowledge of DLG1 biological functions, suggesting that its expression may have an important role in the progression of early dysplastic cervical lesions, giving prognostic information.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Colo do Útero/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/biossíntese , Lesões Intraepiteliais Escamosas Cervicais/metabolismo , Adulto , Colo do Útero/patologia , Proteína 1 Homóloga a Discs-Large , Progressão da Doença , Células Epiteliais/patologia , Feminino , Humanos , Imuno-Histoquímica , Prognóstico , Lesões Intraepiteliais Escamosas Cervicais/patologia
10.
Mol Oncol ; 8(3): 533-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24462519

RESUMO

High-risk human papillomavirus (HPV) infection is the principal risk factor for the development of cervical cancer. The HPV E6 oncoprotein has the ability to target and interfere with several PSD-95/DLG/ZO-1 (PDZ) domain-containing proteins that are involved in the control of cell polarity. This function can be significant for E6 oncogenic activity because a deficiency in cell polarisation is a marker of tumour progression. The establishment and control of polarity in epithelial cells depend on the correct asymmetrical distribution of proteins and lipids at the cell borders and on specialised cell junctions. In this report, we have investigated the effects of HPV E6 protein on the polarity machinery, with a focus on the PDZ partitioning defective 3 (Par3) protein, which is a key component of tight junctions (TJ) and the polarity network. We demonstrate that E6 is able to bind and induce the mislocalisation of Par3 protein in a PDZ-dependent manner without significant reduction in Par3 protein levels. In addition, the high-risk HPV-18 E6 protein promotes a delay in TJ formation when analysed by calcium switch assays. Taken together, the data presented in this study contribute to our understanding of the molecular mechanism by which HPVs induce the loss of cell polarity, with potential implications for the development and progression of HPV-associated tumours.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Papillomavirus Humano 18/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/análise , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteínas de Membrana/análise , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Junções Íntimas/metabolismo , Junções Íntimas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA