Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Plant Cell Environ ; 46(1): 322-338, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36120894

RESUMO

N-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups. A-type PCOs are conserved across all plant species and are generally unaffected at the messenger RNA level by oxygen availability. Instead, B-type PCOs appeared in spermatophytes to acquire transcriptional regulation in response to hypoxia. The inactivation of two A-type PCOs in Arabidopsis thaliana, PCO4 and PCO5, is sufficient to activate the anaerobic response in young seedlings, whereas the additional removal of B-type PCOs leads to a stronger induction of anaerobic genes and impairs plant growth and development. Our results show that both PCO types are required to regulate the anaerobic response in angiosperms. Therefore, while it is possible to distinguish two clades within the PCO family, we conclude that they all contribute to restrain the anaerobic transcriptional programme in normoxic conditions and together generate a molecular switch to toggle the hypoxic response.


Assuntos
Cisteína Dioxigenase , Oxigênio , Cisteína , Filogenia , Hipóxia
2.
Plant J ; 104(4): 979-994, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860440

RESUMO

Plants need to attune their stress responses to the ongoing developmental programmes to maximize their efficacy. For instance, successful submergence adaptation is often associated with a delicate balance between saving resources and their expenditure to activate measures that allow stress avoidance or attenuation. We observed a significant decrease in submergence tolerance associated with ageing in Arabidopsis thaliana, with a critical step between 2 and 3 weeks of post-germination development. This sensitization to flooding was concomitant with the transition from juvenility to adulthood. Transcriptomic analyses indicated that a group of genes related to abscisic acid and oxidative stress response was more highly expressed in juvenile plants than in adult ones. These genes are induced by the endomembrane tethered transcription factor ANAC017 that was in turn activated by submergence-associated oxidative stress. A combination of molecular, biochemical and genetic analyses showed that these genes are located in genomic regions that move towards a heterochromatic state with adulthood, as marked by lysine 4 trimethylation of histone H3. We concluded that, while the mechanisms of flooding stress perception and signal transduction were unaltered between juvenile and adult phases, the sensitivity that these mechanisms set into action is integrated, via epigenetic regulation, into the developmental programme of the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigênese Genética , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Germinação , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fatores de Transcrição/genética
3.
J Exp Bot ; 70(6): 1815-1827, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30861072

RESUMO

Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future.


Assuntos
Álcool Desidrogenase/metabolismo , Evolução Biológica , Embriófitas/metabolismo , Etanol/metabolismo , Fermentação , Piruvato Descarboxilase/metabolismo , Embriófitas/enzimologia
4.
Plant Sci ; 236: 37-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025519

RESUMO

Plant adaptation to hypoxic conditions is mediated by the transcriptional activation of genes involved in the metabolic reprogramming of plant cells to cope with reduced oxygen availability. Recent studies indicated that members of the group VII of the Ethylene Responsive Transcription Factor (ERFs) family act as positive regulators of this molecular response. In the current study, the five ERF-VII transcription factors of Arabidopsis thaliana were compared to infer a hierarchy in their role with respect to the anaerobic response. When the activity of each transcription factor was tested on a set of hypoxia-responsive promoters, RAP2.2, RAP2.3 and RAP2.12 appeared to be the most powerful activators. RAP2.12 was further dissected in transactivation assays in Arabidopsis protoplasts to identify responsible regions for transcriptional activation. An ultimate C-terminal motif was identified as sufficient to drive gene transcription. Finally, using realtime RT-PCR in single and double mutants for the corresponding genes, we confirmed that RAP2.2 and RAP2.12 exert major control upon the anaerobic response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Anaerobiose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA