Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34440666

RESUMO

Adenovirus (Ad) has risen to be a promising alternative to conventional cancer therapy. However, systemic delivery of Ad, which is necessary for the treatment of metastatic cancer, remains a major challenge within the field, owing to poor tumor tropism and nonspecific hepatic tropism of the virus. To address this limitation of Ad, we have synthesized two variants of folic acid (FA)-conjugated methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-L-glutamate (P5N2LG-FA and P5N5LG-FA) using 5 kDa poly(ethylene glycol) (PEG) with a different level of protonation (N2 < N5 in terms of charge), along with a P5N5LG control polymer without FA. Our findings demonstrate that P5N5LG, P5N2LG-FA, and P5N5LG-FA exert a lower level of cytotoxicity compared to 25 kDa polyethyleneimine. Furthermore, green fluorescent protein (GFP)-expressing Ad complexed with P5N2LG-FA and P5N5LG-FA (Ad/P5N2LG-FA and Ad/P5N5LG-FA, respectively) exerted superior transduction efficiency compared to naked Ad or Ad complexed with P5N5LG (Ad/P5N5LG) in folate receptor (FR)-overexpressing cancer cells (KB and MCF7). All three nanocomplexes (Ad/P5N5LG, Ad/P5N2LG-FA, and Ad/P5N5LG-FA) internalized into cancer cells through coxsackie adenovirus receptor-independent endocytic mechanism and the cell uptake was more efficient than naked Ad. Importantly, the cell uptake of the two FA functionalized nanocomplexes (Ad/P5N2LG-FA and Ad/P5N5LG-FA) was dependent on the complementary interaction of FA-FR. Systemically administered Ad/P5N5LG, Ad/P5N2LG-FA, and Ad/P5N5LG-FA showed exponentially higher retainment of the virus in blood circulation up to 24 h post-administration compared with naked Ad. Both tumor-targeted nanocomplexes (Ad/P5N2LG-FA and Ad/P5N5LG-FA) showed significantly higher intratumoral accumulation than naked Ad or Ad/P5N5LG via systemic administration. Both tumor-targeted nanocomplexes accumulated at a lower level in liver tissues compared to naked Ad. Notably, the nonspecific accumulation of Ad/P5N2LG-FA was significantly lower than Ad/P5N5LG-FA in several normal organs, while exhibiting a significantly higher intratumoral accumulation level, showing that careful optimization of polyplex surface charge is critical to successful tumor-targeted systemic delivery of Ad nanocomplexes.


Assuntos
Adenoviridae/genética , Materiais Biocompatíveis/química , Vetores Genéticos , Nanopartículas , Neoplasias/genética , Polímeros/química , Transdução Genética , Células A549 , Adenoviridae/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células MCF-7 , Masculino , Camundongos Nus , Neoplasias/metabolismo , Propriedades de Superfície , Distribuição Tecidual
2.
Biomacromolecules ; 19(6): 2062-2070, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29625005

RESUMO

In this work, pH-responsive polypeptide-based nanogels are reported as potential drug delivery systems. By the formation of pH-sensitive benzoic imine bonds, pH-responsive nanogels are constructed using hydrophilic methoxy poly(ethylene glycol)- b-poly[ N-[ N-(2-aminoethyl)-2-aminoethyl]-l-glutamate] (MPEG- b-PNLG) and hydrophobic terephthalaldehyde (TPA) as a cross-linker. At pH 7.4, MPEG- b-PNLG nanogels exhibit high stabilities with hydrophobic inner cores, which allow encapsulation of hydrophobic therapeutic agents. Under tumoral acidic environments (pH ∼6.4), the cleavage of benzoic imine bonds induces the destruction of MPEG- b-PNLG nanogels and leads to rapid release of their payloads. The formation and pH sensitivity of the nanogels are investigated by dynamic light scattering. These nanogels exhibit excellent stabilities in the presence of salt or against dilution. The globular morphologies of the nanogels are confirmed using transmission electron microscopy. Doxorubicin is used as a model drug to evaluate drug encapsulation and release. Finally, the anticancer activities of the drug-encapsulated nanogels are assessed in vitro.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Polímeros/química , Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Géis/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/administração & dosagem , Polietilenoglicóis/química
3.
Bioconjug Chem ; 26(8): 1818-29, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26158495

RESUMO

As an effective and safe strategy to overcome the limits of therapeutic nucleic acid or adenovirus (Ad) vectors for in vivo application, various technologies to modify the surface of vectors with nonimmunogenic/biocompatible polymers have been emerging in the field of gene therapy. However, the transfection efficacy of the polymer to transfer genetic materials is still relatively weak. To develop more advanced and effective polymers to deliver not only Ad vectors, but also nucleic acids, 6 biocompatible polymers were newly designed and synthesized to different sizes (2k, 3.4k, or 5k) of poly(ethylene) glycol (PEG) and different numbers of amine groups (2 or 5) based on methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-l-glutamate (PNLG). We characterized size distribution and surface charge of 6 PNLGs after complexation with either nucleic acid or Ad. Among all 6 PNLGs, the 5 amine group PNLG showed the strongest efficacy in delivering nucleic acid as well as Ad vectors. Interestingly, cellular uptake results showed higher uptake ability in Ad complexed with 2 amine group PNLG than Ad/5 amine group PNLG, suggesting that the size of Ad/PNLGs is more essential than the surface charge for cellular uptake in polymers with charges greater than 30 mV. Moreover, the endosome escape ability of Ad/PNLGs increased depending on the number of amine groups, but decreased by PEG size. Cancer cell killing efficacy and immune response studies of oncolytic Ad/PNLGs showed 5 amine group PNLG to be a more effective and safe carrier for delivering Ad. Overall, these studies provide new insights into the functional mechanism of polymer-based approaches to either nucleic acid or Ad/nanocomplex. Furthermore, the identified ideal biocompatible PNLG polymer formulation (5 amine/2k PEG for nucleic acid, 5 amine/5k PEG for Ad) demonstrated high transduction efficiency as well as therapeutic value (efficacy and safety) and thus has strong potential for in vivo therapeutic use in the future.


Assuntos
Adenoviridae/genética , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Vetores Genéticos/administração & dosagem , Ácidos Nucleicos/administração & dosagem , Polietilenoglicóis/química , Polímeros/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/administração & dosagem , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA