Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 12(1): 3956, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172741

RESUMO

Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.


Assuntos
Domesticação , Genoma de Planta/genética , Prunus armeniaca/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Evolução Molecular , Frutas/classificação , Frutas/genética , Frutas/crescimento & desenvolvimento , Fluxo Gênico , Variação Genética , Estágios do Ciclo de Vida/genética , Metagenômica , Fenótipo , Filogenia , Prunus armeniaca/classificação , Prunus armeniaca/crescimento & desenvolvimento , Seleção Genética
2.
J Plant Physiol ; 171(16): 1533-40, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128785

RESUMO

Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation.


Assuntos
Proteínas Fúngicas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotiana/genética , Retroelementos , DNA Antissenso/genética , DNA Antissenso/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retroelementos/genética , Transdução de Sinais , Nicotiana/metabolismo
3.
PLoS One ; 6(7): e21889, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21789191

RESUMO

The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipase/metabolismo , Fator 1 de Ribosilação do ADP/química , Biocatálise , Fatores de Troca do Nucleotídeo Guanina/química , Células HeLa , Humanos , Imunoprecipitação , Lipase/química , Lipídeos , Microscopia Imunoeletrônica , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido
4.
Mol Genet Genomics ; 282(4): 329-50, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19669794

RESUMO

The Sec7 domain ADP-ribosylation factor (Arf) guanine nucleotide exchange factors (GEFs) are found in all eukaryotes, and are involved in membrane remodeling processes throughout the cell. This review is focused on members of the GBF/Gea and BIG/Sec7 subfamilies of Arf GEFs, all of which use the class I Arf proteins (Arf1-3) as substrates, and play a fundamental role in trafficking in the endoplasmic reticulum (ER)-Golgi and endosomal membrane systems. Members of the GBF/Gea and BIG/Sec7 subfamilies are large proteins on the order of 200 kDa, and they possess multiple homology domains. Phylogenetic analyses indicate that both of these subfamilies of Arf GEFs have members in at least five out of the six eukaryotic supergroups, and hence were likely present very early in eukaryotic evolution. The homology domains of the large Arf1 GEFs play important functional roles, and are involved in interactions with numerous protein partners. The large Arf1 GEFs have been implicated in several human diseases. They are crucial host factors for the replication of several viral pathogens, including poliovirus, coxsackievirus, mouse hepatitis coronavirus, and hepatitis C virus. Mutations in the BIG2 Arf1 GEF have been linked to autosomal recessive periventricular heterotopia, a disorder of neuronal migration that leads to severe malformation of the cerebral cortex. Understanding the roles of the Arf1 GEFs in membrane dynamics is crucial to a full understanding of trafficking in the secretory and endosomal pathways, which in turn will provide essential insights into human diseases that arise from misregulation of these pathways.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Membrana Celular/metabolismo , Doença/etiologia , Evolução Molecular , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator 1 de Ribosilação do ADP/química , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/genética , Doença/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos
5.
Gene ; 396(2): 248-56, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17490833

RESUMO

Mariner-like elements (MLEs) are class-II transposable elements that move within the genome of their hosts by means of a DNA-mediated "cut and paste" mechanism. MLEs have been identified in several organisms, from most of the phyla. Nevertheless, only a few of the sequences characterized contain an intact open reading frame. Investigation of the genome of a coastal crab, Pachygrapsus marmoratus, has identified nine Pacmmar elements, two of which have an open reading frame encoding a putatively functional transposase. Nucleic acid analyses and comparison with the previous data showed that the GC contents of MLEs derived from coastal organisms such as P. marmoratus are significantly higher than those of terrestrial MLEs and significantly lower than those of hydrothermal ones. Furthermore, molecular phylogeny analyses have shown that Pacmmar elements constitute a new lineage of the irritans subfamily within the mariner family.


Assuntos
Braquiúros/genética , Elementos de DNA Transponíveis/genética , Sequência de Aminoácidos , Animais , Composição de Bases , Sequência de Bases , Clonagem Molecular , Biologia Computacional/métodos , DNA/metabolismo , Dados de Sequência Molecular , Sinais de Localização Nuclear , Fases de Leitura Aberta , Filogenia , Software , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA