Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Sci ; 301: 110644, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218622

RESUMO

Seed longevity (storability) is an important seed quality trait. High seed quality is important in agriculture, for the industry, and for safeguarding biodiversity as many species are stored as seeds in genebanks. To ensure ex-situ seed survival, seeds are mostly stored at low relative humidity and low temperature. Oxidation is the main cause of seed deterioration in these dry storage conditions. The molecular mechanisms underlying dry seed survival remain poorly understood. Research on seed longevity is hampered by the lack of an experimental ageing method that mimics dry ageing well. Here, we propose the Elevated Partial Pressure of Oxygen (EPPO) method as the best available method to mimic and accelerate dry seed ageing. We have tested seed germination in Arabidopsis thaliana after EPPO storage at two different relative humidity (RH) conditions and confirm the large effect of oxygen and the seed moisture content on ageing during dry storage. Comparative Quantitative trait locus (QTL) analysis shows that EPPO at 55 % RH mimics dry ageing better than the commonly used Artificial Ageing and Controlled Deterioration tests at higher moisture levels.


Assuntos
Arabidopsis/genética , Oxigênio/fisiologia , Locos de Características Quantitativas/genética , Sementes/genética , Arabidopsis/fisiologia , Mapeamento Cromossômico , Germinação , Umidade , Sementes/fisiologia , Temperatura
2.
Plants (Basel) ; 9(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549219

RESUMO

Primary seed dormancy is the phenomenon whereby seeds newly shed by the mother plant are unable to germinate under otherwise favorable conditions for germination. Primary dormancy is released during dry seed storage (after-ripening), and the seeds acquire the capacity to germinate upon imbibition under favorable conditions, i.e., they become non-dormant. Primary dormancy can also be released from the seed by various treatments, for example, by cold imbibition (stratification). Non-dormant seeds can temporarily block their germination if exposed to unfavorable conditions upon seed imbibition until favorable conditions are available. Nevertheless, prolonged unfavorable conditions will re-induce dormancy, i.e., germination will be blocked upon exposure to favorable conditions. This phenomenon is referred to as secondary dormancy. Relative to primary dormancy, the mechanisms underlying secondary dormancy remain understudied in Arabidopsis thaliana and largely unknown. This is partly due to the experimental difficulty in observing secondary dormancy in the laboratory and the absence of established experimental protocols. Here, an overview is provided of the current knowledge on secondary dormancy focusing on A. thaliana, and a working model describing secondary dormancy is proposed, focusing on the interaction of primary and secondary dormancy.

3.
Plant J ; 102(2): 327-339, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31785171

RESUMO

Primary seed dormancy is a mechanism that orchestrates the timing of seed germination in order to prevent out-of-season germination. Secondary dormancy can be induced in imbibed seeds when they encounter prolonged unfavourable conditions. Secondary dormancy is not induced during dry storage, and therefore the mechanisms underlying this process have remained largely unexplored. Here, a 2-year seed burial experiment in which dormancy cycling was studied at the physiological and transcriptional level is presented. For these analyses six different Arabidopsis thaliana genotypes were used: Landsberg erecta (Ler) and the dormancy associated DELAY OF GERMINATION (DOG) near-isogenic lines 1, 2, 3, 6 and 22 (NILDOG1, 2, 3, 6 and 22). The germination potential of seeds exhumed from the field showed that these seeds go through dormancy cycling and that the dynamics of this cycling is genotype dependent. RNA-seq analysis revealed large transcriptional changes during dormancy cycling, especially at the time points preceding shifts in dormancy status. Dormancy cycling is driven by soil temperature and the endosperm is important in the perception of the environment. Genes that are upregulated in the low- to non-dormant stages are enriched for genes involved in translation, indicating that the non-dormant seeds are prepared for rapid seed germination.


Assuntos
Arabidopsis/genética , Dormência de Plantas/genética , Transcriptoma , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Genótipo , Germinação , Estações do Ano , Sementes/genética , Sementes/fisiologia , Solo , Temperatura
4.
Plant Cell Physiol ; 60(2): 318-328, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388244

RESUMO

Aging decreases the quality of seeds and results in agricultural and economic losses. The damage that occurs at the biochemical level can alter the seed physiological status. Although loss of viability has been investigated frequently, little information exists on the molecular and biochemical factors involved in seed deterioration and loss of viability. Oxidative stress has been implicated as a major contributor to seed deterioration, and several pathways are involved in protection against this. In this study, we show that seeds of Arabidopsis thaliana lacking a functional NADP-MALIC ENZYME 1 (NADP-ME1) have reduced seed viability relative to the wild type. Seeds of the NADP-ME1 loss-of-function mutant display higher levels of protein carbonylation than those of the wild type. NADP-ME1 catalyzes the oxidative decarboxylation of malate to pyruvate with the simultaneous production of CO2 and NADPH. Upon seed imbibition, malate and amino acids accumulate in embryos of aged seeds of the NADP-ME1 loss-of-function mutant compared with those of the wild type. NADP-ME1 expression is increased in imbibed aged as compared with non-aged seeds. NADP-ME1 activity at testa rupture promotes normal germination of aged seeds. In seedlings of aged seeds, NADP-ME1 is specifically active in the root meristematic zone. We propose that NADP-ME1 activity is required for protecting seeds against oxidation during seed dry storage.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Germinação/fisiologia , Malato Desidrogenase (NADP+)/fisiologia , Sementes/fisiologia , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/fisiologia
5.
J Exp Bot ; 69(15): 3601-3608, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29701795

RESUMO

Seed dormancy determines the timing of seed germination and may be released by dry storage, also referred to as after-ripening. Studies on dormancy-release mechanisms are often hampered by the long after-ripening requirements of seeds. After-ripening is thought to be mainly caused by oxidative processes during seed dry storage. These processes are also the main cause of seed ageing. Increasing partial oxygen pressure through the elevated partial pressure of oxygen (EPPO) system has been shown to mimic and accelerate dry seed ageing. In this study, we investigated whether the EPPO system may also release primary seed dormancy in Arabidopsis thaliana. EPPO mimics dry after-ripening at the genetic level, as quantitative trait locus (QTL) analysis after EPPO treatment identified the DELAY OF GERMINATION loci DOG1, DOG2, and DOG6 that were first described in a study using dry after-ripening to release seed dormancy. QTL analysis also showed that dormancy release by cold stratification (another common method to break seed dormancy) partly overlaps with release by after-ripening and EPPO treatment. We conclude that EPPO is an appropriate method to mimic and accelerate dormancy release and, as such, may have applications in both research and industry.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oxigênio/fisiologia , Dormência de Plantas , Locos de Características Quantitativas/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Loci Gênicos/genética , Germinação , Pressão Parcial , Sementes/genética , Sementes/fisiologia
6.
Funct Plant Biol ; 45(11): 1083-1095, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32290970

RESUMO

Desiccation sensitive (DS) seeds do not survive dry storage due to their lack of desiccation tolerance. Almost half of the plant species in tropical rainforests produce DS seeds and therefore the desiccation sensitivity of these seeds represents a problem for and long-term biodiversity conservation. This phenomenon raises questions as to how, where and why DS (desiccation sensitive)-seeded species appeared during evolution. These species evolved probably independently from desiccation tolerant (DT) seeded ancestors. They adapted to environments where the conditions are conducive to immediate germination after shedding, e.g. constant and abundant rainy seasons. These very predictable conditions offered a relaxed selection for desiccation tolerance that eventually got lost in DS seeds. These species are highly dependent on their environment to survive and they are seriously threatened by deforestation and climate change. Understanding of the ecology, evolution and molecular mechanisms associated with seed desiccation tolerance can shed light on the resilience of DS-seeded species and guide conservation efforts. In this review, we survey the available literature for ecological and physiological aspects of DS-seeded species and combine it with recent knowledge obtained from DT model species. This enables us to generate hypotheses concerning the evolution of DS-seeded species and their associated genetic alterations.

7.
Plant Cell ; 29(10): 2450-2464, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28970334

RESUMO

The role of phloem proteins in plant resistance to aphids is still largely elusive. By genome-wide association mapping of aphid behavior on 350 natural Arabidopsis thaliana accessions, we identified the small heat shock-like SIEVE ELEMENT-LINING CHAPERONE1 (SLI1). Detailed behavioral studies on near-isogenic and knockout lines showed that SLI1 impairs phloem feeding. Depending on the haplotype, aphids displayed a different duration of salivation in the phloem. On sli1 mutants, aphids prolonged their feeding sessions and ingested phloem at a higher rate than on wild-type plants. The largest phenotypic effects were observed at 26°C, when SLI1 expression is upregulated. At this moderately high temperature, sli1 mutants suffered from retarded elongation of the inflorescence and impaired silique development. Fluorescent reporter fusions showed that SLI1 is confined to the margins of sieve elements where it lines the parietal layer and colocalizes in spherical bodies around mitochondria. This localization pattern is reminiscent of the clamp-like structures observed in previous ultrastructural studies of the phloem and shows that the parietal phloem layer plays an important role in plant resistance to aphids and heat stress.


Assuntos
Afídeos/fisiologia , Proteínas de Arabidopsis/metabolismo , Floema/metabolismo , Animais , Arabidopsis , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Temperatura Alta
8.
Plant Cell Environ ; 39(8): 1737-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26991665

RESUMO

The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental-phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Evolução Biológica , Flores/fisiologia , Dormência de Plantas , Adaptação Biológica , Altitude , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clima , Germinação , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA