Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289916

RESUMO

Vaccines are a promising therapeutic alternative to monoclonal antibodies against HER-2+ breast cancer. We present the preclinical activity of an ES2B-C001, a VLP-based vaccine being developed for human breast cancer therapy. FVB mice challenged with HER-2+ mammary carcinoma cells QD developed progressive tumors, whereas all mice vaccinated with ES2B-C001+Montanide ISA 51, and 70% of mice vaccinated without adjuvant, remained tumor-free. ES2B-C001 completely inhibited lung metastases in mice challenged intravenously. HER-2 transgenic Delta16 mice developed mammary carcinomas by 4−8 months of age; two administrations of ES2B-C001+Montanide prevented tumor onset for >1 year. Young Delta16 mice challenged intravenously with QD cells developed a mean of 68 lung nodules in 13 weeks, whereas all mice vaccinated with ES2B-C001+Montanide, and 73% of mice vaccinated without adjuvant, remained metastasis-free. ES2B-C001 in adjuvant elicited strong anti-HER-2 antibody responses comprising all Ig isotypes; titers ranging from 1−10 mg/mL persisted for many months. Antibodies inhibited the 3D growth of human HER-2+ trastuzumab-sensitive and -resistant breast cancer cells. Vaccination did not induce cytokine storms; however, it increased the ELISpot frequency of IFN-γ secreting HER-2-specific splenocytes. ES2B-C001 is a promising candidate vaccine for the therapy of tumors expressing HER-2. Preclinical results warrant further development towards human clinical studies.

2.
Metab Eng ; 44: 81-88, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28939277

RESUMO

Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7-C13) by yeast Saccharomyces cerevisiae through engineering fatty acid synthases to control the chain length of fatty acids and introducing heterologous pathways for alkane or 1-alkene synthesis. We carried out enzyme engineering/screening of the fatty aldehyde deformylating oxygenase (ADO), and compartmentalization of the alkane biosynthesis pathway into peroxisomes to improve alkane production. The two-step synthesis of alkanes was found to be inefficient due to the formation of alcohols derived from aldehyde intermediates. Alternatively, the drain of aldehyde intermediates could be circumvented by introducing a one-step decarboxylation of fatty acids to 1-alkenes, which could be synthesized at a level of 3mg/L, 25-fold higher than that of alkanes produced via aldehydes.


Assuntos
Alcanos/metabolismo , Alcenos/metabolismo , Ácidos Graxos , Engenharia Metabólica , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Microb Cell Fact ; 16(1): 74, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464872

RESUMO

BACKGROUND: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore performed functional screening to identify efficient ADs that can improve alkane production by S. cerevisiae. RESULTS: A comparative study of ADs originated from a plant, insects, and cyanobacteria were conducted in S. cerevisiae. As a result, expression of aldehyde deformylating oxygenases (ADOs), which are cyanobacterial ADs, from Synechococcus elongatus and Crocosphaera watsonii converted fatty aldehydes to corresponding Cn-1 alkanes and alkenes. The CwADO showed the highest alkane titer (0.13 mg/L/OD600) and the lowest fatty alcohol production (0.55 mg/L/OD600). However, no measurable alkanes and alkenes were detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. CONCLUSIONS: We demonstrated in vivo enzyme activities of ADs by displaying profiles of alkanes and fatty alcohols in S. cerevisiae. Among the AD enzymes evaluated, cyanobacteria ADOs were found to be suitable for alkane biosynthesis in S. cerevisiae. This work will be helpful to decide an AD candidate for alkane biosynthesis in S. cerevisiae and it will provide useful information for further investigation of AD enzymes with improved activities.


Assuntos
Aldeído Liases/metabolismo , Alcanos/metabolismo , Cianobactérias/enzimologia , Engenharia Metabólica , Saccharomyces cerevisiae/enzimologia , Aldeído Liases/genética , Aldeídos/metabolismo , Alcenos/metabolismo , Biocombustíveis , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Álcoois Graxos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Saccharomyces cerevisiae/genética
4.
FEMS Yeast Res ; 17(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073929

RESUMO

Phenylpropanoids, such as flavonoids and stilbenoids, are of great commercial interest, and their production in Saccharomyces cerevisiae is a very promising strategy. However, to achieve commercially viable production, each step of the process must be optimised. We looked at carbon loss, known to occur in the heterologous flavonoid pathway in yeast, and identified an endogenous enzyme, the enoyl reductase Tsc13, which turned out to be responsible for the accumulation of phloretic acid via reduction of p-coumaroyl-CoA. Tsc13 is an essential enzyme involved in fatty acid synthesis and cannot be deleted. Hence, two approaches were adopted in an attempt to reduce the side activity without disrupting the natural function: site saturation mutagenesis identified a number of amino acid changes which slightly increased flavonoid production but without reducing the formation of the side product. Conversely, the complementation of TSC13 by a plant gene homologue essentially eliminated the unwanted side reaction, while retaining the productivity of phenylpropanoids in a simulated fed batch fermentation.


Assuntos
Compostos Heterocíclicos/metabolismo , Engenharia Metabólica/métodos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes Essenciais , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Am Chem Soc ; 138(47): 15368-15377, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27753483

RESUMO

Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable environment for biosynthesis. Peroxisomes are cellular organelles where fatty acids are degraded, a process that is inhibited under typical fermentation conditions making them an interesting workhouse for production of fatty-acid-derived molecules. Here, we show that targeting synthetic pathways to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate that production can be enhanced up to 3-fold by increasing the peroxisome population. The strategies described here could be used for production of other chemicals, especially acyl-CoA-derived molecules.


Assuntos
Biocombustíveis , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Peroxissomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Estrutura Molecular
6.
Nat Commun ; 7: 11709, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27222209

RESUMO

Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.


Assuntos
Alcanos/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Álcoois Graxos/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Biocombustíveis
7.
Biotechnol Bioeng ; 112(6): 1275-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25545362

RESUMO

In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.


Assuntos
Alcanos/metabolismo , Vias Biossintéticas , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-25225637

RESUMO

Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.

9.
Biotechnol J ; 9(3): 372-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24376125

RESUMO

The scale-up of fermentation processes frequently leads to a reduced productivity compared to small-scale screening experiments. Large-scale mixing limitations that lead to gradients in substrate and oxygen availability could influence the microorganism performance. Here, the impact of substrate gradients on a penicillin G producing Penicillium chrysogenum cultivation was analyzed using an intermittent glucose feeding regime. The intermittent feeding led to fluctuations in the extracellular glucose concentration between 400 µM down to 6.5 µM at the end of the cycle. The intracellular metabolite concentrations responded strongly and showed up to 100-fold changes. The intracellular flux changes were estimated on the basis of dynamic (13) C mass isotopomer measurements during three cycles of feast and famine using a novel hybrid modeling approach. The flux estimations indicated a high turnover of internal and external storage metabolites in P. chrysogenum under feast/famine conditions. The synthesis and degradation of storage requires cellular energy (ATP and UTP) in competition with other cellular functions including product formation. Especially, 38% of the incoming glucose was recycled once in storage metabolism. This result indicated that storage turnover is increased under dynamic cultivation conditions and contributes to the observed decrease in productivity compared to reference steady-state conditions.


Assuntos
Glucose/metabolismo , Penicilina G/metabolismo , Penicillium chrysogenum/metabolismo , Radioisótopos de Carbono , Meios de Cultura , Glicólise , Penicilina G/química , Penicillium chrysogenum/química , Especificidade por Substrato
10.
Curr Opin Chem Biol ; 17(3): 480-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23628723

RESUMO

Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels.


Assuntos
Biocombustíveis/microbiologia , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Butanóis/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Sesquiterpenos/metabolismo
11.
Biotechnol J ; 6(8): 944-58, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751388

RESUMO

In large-scale production reactors the combination of high broth viscosity and large broth volume leads to insufficient liquid-phase mixing, resulting in gradients in, for example, the concentrations of substrate and oxygen. This often leads to differences in productivity of the full-scale process compared with laboratory scale. In this scale-down study of penicillin production, the influence of substrate gradients on process performance and cell physiology was investigated by imposing an intermittent feeding regime on a laboratory-scale culture of a high yielding strain of Penicillium chrysogenum. It was found that penicillin production was reduced by a factor of two in the intermittently fed cultures relative to constant feed cultivations fed with the same amount of glucose per hour, while the biomass yield was the same. Measurement of the levels of the intermediates of the penicillin biosynthesis pathway, along with the enzyme levels, suggested that the reduction of the flux through the penicillin pathway is mainly the result of a lower influx into the pathway, possibly due to inhibitory levels of adenosine monophosphate and pyrophosphate and lower activating levels of adenosine triphosphate during the zero-substrate phase of each cycle of intermittent feeding.


Assuntos
Glucose/metabolismo , Microbiologia Industrial , Penicilinas/biossíntese , Penicillium chrysogenum/metabolismo , Ciclo do Carbono , Coenzima A Ligases/metabolismo , Redes e Vias Metabólicas , Oxirredutases/metabolismo , Penicillium chrysogenum/química , Peptídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA