Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4920, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995787

RESUMO

Celiac disease is an autoimmune disorder in which ingestion of dietary gluten triggers an immune reaction in the small intestine leading to destruction of the lining epithelium. Current treatment focusses on lifelong adherence to a gluten-free diet. Gluten-specific CD4+ T cells and cytotoxic intraepithelial CD8+ T cells have been proposed to be central in disease pathogenesis. Here we use unbiased single-cell RNA-sequencing and explore the heterogeneity of CD45+ immune cells in the human small intestine. We show altered myeloid cell transcriptomes present in active celiac lesions. CD4+ and CD8+ T cells transcriptomes show extensive changes and we define a natural intraepithelial lymphocyte population that is reduced in celiac disease. We show that the immune landscape in Celiac patients on a gluten-free diet is only partially restored compared to control samples. Altogether, we provide a single cell transcriptomic resource that can inform the immune landscape of the small intestine during Celiac disease.


Assuntos
Doença Celíaca , Linfócitos T CD8-Positivos , Glutens , Humanos , Intestino Delgado , Transcriptoma
2.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021063

RESUMO

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
3.
Cell Rep ; 36(12): 109748, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551300

RESUMO

Obesity-induced inflammation is a major driving force in the development of insulin resistance, type 2 diabetes (T2D), and related metabolic disorders. During obesity, macrophages accumulate in the visceral adipose tissue, creating a low-grade inflammatory environment. Nuclear factor κB (NF-κB) signaling is a central coordinator of inflammatory responses and is tightly regulated by the anti-inflammatory protein A20. Here, we find that myeloid-specific A20-deficient mice are protected from diet-induced obesity and insulin resistance despite an inflammatory environment in their metabolic tissues. Macrophages lacking A20 show impaired mitochondrial respiratory function and metabolize more palmitate both in vitro and in vivo. We hypothesize that A20-deficient macrophages rely more on palmitate oxidation and metabolize the fat present in the diet, resulting in a lean phenotype and protection from metabolic disease. These findings reveal a role for A20 in regulating macrophage immunometabolism.


Assuntos
Ácidos Graxos/metabolismo , Obesidade/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Tecido Adiposo Branco/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hidroliases/genética , Hidroliases/metabolismo , Resistência à Insulina , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Consumo de Oxigênio , Palmitatos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
4.
Front Immunol ; 12: 690813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177948

RESUMO

With the increasing availability and accessibility of single cell technologies, much attention has been given to delineating the specific populations of cells present in any given tissue. In recent years, hepatic macrophage heterogeneity has also begun to be examined using these strategies. While previously any macrophage in the liver was considered to be a Kupffer cell (KC), several studies have recently revealed the presence of distinct subsets of hepatic macrophages, including those distinct from KCs both under homeostatic and non-homeostatic conditions. This heterogeneity has brought the concept of macrophage plasticity into question. Are KCs really as plastic as once thought, being capable of responding efficiently and specifically to any given stimuli? Or are the differential responses observed from hepatic macrophages in distinct settings due to the presence of multiple subsets of these cells? With these questions in mind, here we examine what is currently understood regarding hepatic macrophage heterogeneity in mouse and human and examine the role of heterogeneity vs plasticity in regards to hepatic macrophage responses in settings of both pathogen-induced and sterile inflammation.


Assuntos
Fígado/imunologia , Macrófagos/imunologia , Animais , Humanos , Inflamação/imunologia
5.
Cancer Immunol Immunother ; 68(4): 687-697, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684003

RESUMO

In cancer, infection and inflammation, the immune system's function can be dysregulated. Instead of fighting disease, immune cells may increase pathology and suppress host-protective immune responses. Myeloid cells show high plasticity and adapt to changing conditions and pathological challenges. Despite their relevance in disease pathophysiology, the identity, heterogeneity and biology of myeloid cells is still poorly understood. We will focus on phenotypical and functional markers of one of the key myeloid regulatory subtypes, the myeloid derived suppressor cells (MDSC), in humans, mice and non-human primates. Technical issues regarding the isolation of the cells from tissues and blood, timing and sample handling of MDSC will be detailed. Localization of MDSC in a tissue context is of crucial importance and immunohistochemistry approaches for this purpose are discussed. A minimal antibody panel for MDSC research is provided as part of the Mye-EUNITER COST action. Strategies for the identification of additional markers applying state of the art technologies such as mass cytometry will be highlighted. Such marker sets can be used to study MDSC phenotypes across tissues, diseases as well as species and will be crucial to accelerate MDSC research in health and disease.


Assuntos
Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Animais , Biomarcadores , Separação Celular/métodos , Humanos , Imunofenotipagem/métodos , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Primatas
6.
J Exp Med ; 215(2): 441-458, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273642

RESUMO

Macrophages (Mfs) are instrumental in maintaining immune homeostasis in the intestine, yet studies on the origin and heterogeneity of human intestinal Mfs are scarce. Here, we identified four distinct Mf subpopulations in human small intestine (SI). Assessment of their turnover in duodenal transplants revealed that all Mf subsets were completely replaced over time; Mf1 and Mf2, phenotypically similar to peripheral blood monocytes (PBMos), were largely replaced within 3 wk, whereas two subsets with features of mature Mfs, Mf3 and Mf4, exhibited significantly slower replacement. Mf3 and Mf4 localized differently in SI; Mf3 formed a dense network in mucosal lamina propria, whereas Mf4 was enriched in submucosa. Transcriptional analysis showed that all Mf subsets were markedly distinct from PBMos and dendritic cells. Compared with PBMos, Mf subpopulations showed reduced responsiveness to proinflammatory stimuli but were proficient at endocytosis of particulate and soluble material. These data provide a comprehensive analysis of human SI Mf population and suggest a precursor-progeny relationship with PBMos.


Assuntos
Intestino Delgado/citologia , Macrófagos/classificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Sobrevivência Celular , Citocinas/biossíntese , Células Dendríticas/classificação , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Duodeno/citologia , Duodeno/transplante , Endocitose , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/classificação , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose , Fatores de Tempo , Transcriptoma
7.
PLoS One ; 11(6): e0157387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311059

RESUMO

Conventional dendritic cells (cDCs) comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14- cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs.


Assuntos
Antígenos CD1/imunologia , Linfócitos T CD4-Positivos/imunologia , Separação Celular/métodos , Células Dendríticas/imunologia , Citometria de Fluxo/normas , Glicoproteínas/imunologia , Monócitos/imunologia , Antígenos CD1/genética , Linfócitos T CD4-Positivos/citologia , Comunicação Celular , Técnicas de Cocultura , Células Dendríticas/citologia , Expressão Gênica , Glicoproteínas/genética , Humanos , Ativação Linfocitária , Monócitos/citologia , Cultura Primária de Células , Kit de Reagentes para Diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA