Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534421

RESUMO

Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.

2.
Life (Basel) ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895461

RESUMO

Flower-rich habitats are crucial for promoting biodiversity and ecosystem services within agricultural ecosystems, such as pollination and pest control. The present study investigates the efficacy of employing floral structures as a criterion for the selection of plant species in order to enhance the attraction of natural enemies within cucumber greenhouses, consequently augmenting floral resources. The results of our study provide evidence that flower strips have a beneficial effect on the fitness of critical natural predators, while not facilitating the proliferation of detrimental insect species. These findings exhibit potential for enhancing pest-management services in the agricultural sector. The findings of our study demonstrate that pest levels within greenhouse environments closely resemble those observed in real-world commercial cropping systems. As a result, the introduction of Coccinella septempunctata and Menochilus sexmaculatus biocontrol agents is confirmed to be a reliable and efficient method for pest management. The phenomenon of predator-prey density dependency is recognized as a crucial element in the implementation of biological control strategies. Furthermore, we investigate the impact of floral resources on the reproductive capacity of indigenous predators. The impact of Coriandrum sativum on fertility is substantial, indicating that the presence of a varied plant assortment with overlapping flowering periods can prolong the availability of floral resources. This study highlights the significance of flower-rich habitats and deliberate plant selection in augmenting biodiversity, ecosystem services, and pest management within agricultural settings. The implementation of conservation biological control technologies presents supplementary ecological advantages, thus offering practical implications for the promotion of sustainable agricultural practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA