RESUMO
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Assuntos
Fabaceae , Simbiose , Simbiose/fisiologia , Ecossistema , Fixação de Nitrogênio/genética , BactériasRESUMO
During the emergence of new host-microbe symbioses, microbial fitness results from the ability to complete the different steps of symbiotic life cycles, where each step imposes specific selective pressures. However, the relative contribution of these different selective pressures to the adaptive trajectories of microbial symbionts is still poorly known. Here, we characterized the dynamics of phenotypic adaptation to a simplified symbiotic life cycle during the experimental evolution of a plant pathogenic bacterium into a legume symbiont. We observed that fast adaptation was predominantly explained by improved competitiveness for host entry, which outweighed adaptation to within-host proliferation. Whole-population sequencing of bacteria at regular time intervals along this evolution experiment revealed the continuous accumulation of new mutations (fuelled by a transient hypermutagenesis phase occurring at each cycle before host entry, a phenomenon described in previous work) and sequential sweeps of cohorts of mutations with similar temporal trajectories. The identification of adaptive mutations within the fixed mutational cohorts showed that several adaptive mutations can co-occur in the same cohort. Moreover, all adaptive mutations improved competitiveness for host entry, while only a subset of those also improved within-host proliferation. Computer simulations predict that this effect emerges from the presence of a strong selective bottleneck at host entry occurring before within-host proliferation and just after the hypermutagenesis phase in the rhizosphere. Together, these results show how selective bottlenecks can alter the relative influence of selective pressures acting during bacterial adaptation to multistep infection processes.
Assuntos
Fabaceae , Fabaceae/genética , Bactérias/genética , Adaptação Fisiológica , Mutação , Aclimatação , Simbiose/genéticaRESUMO
To study the dynamics of bovine tuberculosis (bTB) in France, 4,654 M. bovis strains isolated mainly from livestock and wildlife since 1978 were characterized by spoligotyping and MLVA based on MIRU-VNTR. In our study spoligotyping allowed the discrimination of 176 types although 3 spoligotypes are predominant and account for more than half of the total strain population: SB0120 (26%), SB0134 (11%) and SB0121 (6%). In addition, 11% of the isolates, principally from Southern France, showing close spoligotypes and MIRU-VNTR types have been gathered in a family designated as the "F4-family". MLVA typing allowed extensive discrimination, particularly for strains with predominant spoligotypes, with a total of 498 genotypes, several of which were highly regionalized. The similarity of the strains' genetic relationships based on spoligotyping and MIRU-VNTR markers supports the co-existence of different clonal populations within the French M. bovis population. A genetic evolution of the strains was observed both geographically and in time. Indeed, as a result of the reduction of bTB due to the national control campaigns, a large reduction of the strains' genetic variability took place in the last ten years. However, in the regions were bTB is highly prevalent at present, cases in both livestock and in wildlife are due to the spread of unique local genotype profiles. Our results show that the highly discriminating genotyping tools used in this study for molecular studies of bTB are useful for addressing pending questions, which would lead to a better insight into the epidemiology of the disease, and for finding proper solutions for its sustainable control in France.
Assuntos
Animais Selvagens/microbiologia , Evolução Molecular , Mycobacterium bovis/genética , Tuberculose Bovina/microbiologia , Tuberculose/veterinária , Animais , Técnicas de Tipagem Bacteriana , Bovinos , França/epidemiologia , Variação Genética , Genótipo , Mycobacterium bovis/isolamento & purificação , Sequências de Repetição em Tandem/genética , Tuberculose/epidemiologia , Tuberculose/microbiologia , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/patologiaRESUMO
We describe here 35 animal cases of tuberculosis due to Mycobacterium microti in France (2002-2014). Recently, molecular tools that overcome the difficulty of confirming infection by this potentially zoonotic agent have revealed an increasing number of cases, suggesting that its prevalence may have been underestimated.