Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(2): H357-H369, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038720

RESUMO

Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional Fxn allele and one floxed-out/null allele. These mice quickly develop cardiomyopathy that becomes fatal by 9-11 wk of age. Here, we generated a cardiac-specific model with floxed Fxn allele homozygosity (MCK-Fxnflox/flox). MCK-Fxnflox/flox mice were phenotypically normal at 9 wk of age, despite no detectable FXN protein expression. Between 13 and 15 wk of age, these mice began to display progressive cardiomyopathy, including decreased ejection fraction and fractional shortening and increased left ventricular mass. MCK-Fxnflox/flox mice began to lose weight around 16 wk of age, characteristically associated with heart failure in other cardiac-specific FA models. By 18 wk of age, MCK-Fxnflox/flox mice displayed elevated markers of Fe-S deficiency, cardiac stress and injury, and cardiac fibrosis. This modified model reproduced important pathophysiological and biochemical features of FA over a longer timescale than previous cardiac-specific mouse models, offering a larger window for studying potential therapeutics.NEW & NOTEWORTHY Previous cardiac-specific frataxin knockout models exhibit rapid and fatal cardiomyopathy by 9 wk of age. This severe phenotype poses challenges for the design and execution of intervention studies. We introduce an alternative cardiac-specific model, MCK-Fxnflox/flox, with increased longevity and delayed onset of all major phenotypes. These phenotypes develop to the same severity as previous models. Thus, this new model provides the same cardiomyopathy-associated mortality with a larger window for potential studies.


Assuntos
Cardiomiopatias , Ataxia de Friedreich , Humanos , Camundongos , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Alelos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Frataxina , Miócitos Cardíacos/metabolismo
2.
Amyloid ; 30(2): 208-219, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36399070

RESUMO

BACKGROUND: Tafamidis inhibits progression of transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) by binding TTR tetramer and inhibiting dissociation to monomers capable of denaturation and deposition in cardiac tissue. While the phase 3 ATTR-ACT trial demonstrated the efficacy of tafamidis, the degree to which the approved dose captures the full potential of the mechanism has yet to be assessed. METHODS: We developed a model of dynamic TTR concentrations in plasma to relate TTR occupancy by tafamidis to TTR stabilisation. We then developed population pharmacokinetic-pharmacodynamic models to characterise the relationship between stabilisation and measures of disease progression. RESULTS: Modelling individual patient data of tafamidis exposure and increased plasma TTR confirmed that single-site binding provides complete tetramer stabilisation in vivo. The approved dose was estimated to reduce unbound TTR tetramer by 92%, and was associated with 53%, 56% and 49% decreases in the rate of change in NT-proBNP, KCCQ-OS, and six-minute walk test disease progression measures, respectively. Simulating complete TTR stabilisation predicted slightly greater reductions of 58%, 61% and 54%, respectively. CONCLUSIONS: These findings support the value of TTR stabilisation as a clinically beneficial treatment option in ATTR-CM and the ability of tafamidis to realise nearly the full therapeutic benefit of this mechanism. CLINICALTRIALS.GOV IDENTIFIER: NCT01994889.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Humanos , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/complicações , Pré-Albumina/genética , Pré-Albumina/metabolismo , Benzoxazóis/uso terapêutico , Cardiomiopatias/metabolismo , Progressão da Doença
3.
Nat Struct Mol Biol ; 29(5): 420-429, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35449234

RESUMO

The integrity of a cell's proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.


Assuntos
Actinas , Tubulina (Proteína) , Actinas/metabolismo , Chaperonina com TCP-1/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo , Humanos , Masculino , Peptídeos , Dobramento de Proteína , Tubulina (Proteína)/metabolismo
4.
Mol Ther Methods Clin Dev ; 24: 367-378, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35252470

RESUMO

Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction. While evaluating an AAV9-based frataxin gene therapy using a chicken ß-actin promoter, we showed that toxic overexpression of frataxin could be reached in mouse liver and heart with doses between 1 × 1013 and 1 × 1014 vg/kg. In a mouse model of cardiac disease, these doses only corrected cardiac dysfunction partially and transiently and led to adverse findings associated with iron-sulfur cluster deficiency in liver. We demonstrated that toxicity required frataxin's primary function by using a frataxin construct bearing the N146K mutation, which impairs binding to the iron-sulfur cluster core complex. At the lowest tested dose, we observed moderate liver toxicity that was accompanied by progressive loss of transgene expression and liver regeneration. Together, our data provide insights into the toxicity of frataxin overexpression that should be considered in the development of a gene therapy approach for Friedreich's ataxia.

6.
Nat Commun ; 10(1): 2210, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101807

RESUMO

The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.


Assuntos
Liases de Carbono-Enxofre/ultraestrutura , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/ultraestrutura , Proteínas Ferro-Enxofre/ultraestrutura , Mitocôndrias/ultraestrutura , Liases de Carbono-Enxofre/isolamento & purificação , Liases de Carbono-Enxofre/metabolismo , Microscopia Crioeletrônica , Ataxia de Friedreich/genética , Ferro/metabolismo , Proteínas de Ligação ao Ferro/isolamento & purificação , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/isolamento & purificação , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Enxofre/metabolismo , Zinco/metabolismo , Frataxina
7.
Medchemcomm ; 10(2): 209-220, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30881609

RESUMO

The mitochondrial acyl carrier protein (human ACPM, yeast Acp1) is an essential mitochondrial protein. Through binding of nascent acyl chains on the serine (S112)-bound 4'-phosphopantetheine (4'-PP) cofactor, ACPM is involved in mitochondrial fatty acid synthesis and lipoic acid biogenesis. Recently, yeast Acp1 was found to interact with several mitochondrial complexes, including the iron-sulfur (Fe-S) cluster biosynthesis and respiratory complexes, via the binding to LYRM proteins, a family of proteins involved in assembly/stability of complexes. Importantly, the interaction of LYRM proteins with Acp1 was shown to be essential in maintaining integrity of mitochondrial complexes. In human, recent structures show that ACPM binding to LYRM proteins involves acyl chains attached to the 4'-PP cofactor. Here, we performed an detailed characterization of the mitochondrial interactome of human ACPM by mass spectrometry (MS) and demonstrate the crucial role of the 4'-PP cofactor in most of ACPM interactions. Specifically, we show that ACPM interacts with endogenous Fe-S cluster complex components through binding of the LYRM protein ISD11/LYRM4. Using knockdown experiments, we further determine that ACPM is essential for the stability of mitochondrial respiratory complexes I, II and III, as well as the Fe-S cluster biosynthesis complex. Finally, using native MS and a top-down MS approach, we show that C14, C16 and C18 3-keto-acyl chains on ACPM are implicated in binding to ISD11 through analysis of the recombinant ACPM-ISD11 complex. Taken together, our data provide novel understanding of the role of 4'-PP- and long acyl chains-dependent interactions in human ACPM function.

8.
Biochimie ; 152: 211-218, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031876

RESUMO

Human de novo iron-sulfur (Fe-S) assembly complex consists of cysteine desulfurase NFS1, accessory protein ISD11, acyl carrier protein ACP, scaffold protein ISCU, and allosteric activator frataxin (FXN). FXN binds the NFS1-ISD11-ACP-ISCU complex (SDAU), to activate the desulfurase activity and Fe-S cluster biosynthesis. In the absence of FXN, the NFS1-ISD11-ACP (SDA) complex was reportedly inhibited by binding of recombinant ISCU. Recent studies also reported a substitution at position Met141 on the yeast ISCU orthologue Isu, to Ile, Leu, Val, or Cys, could bypass the requirement of FXN for Fe-S cluster biosynthesis and cell viability. Here, we show that recombinant human ISCU binds zinc(II) ion, as previously demonstrated with the E. coli orthologue IscU. Surprisingly, the relative proportion between zinc-bound and zinc-depleted forms varies among purification batches. Importantly the presence of zinc in ISCU impacts SDAU desulfurase activity. Indeed, removal of zinc(II) ion from ISCU causes a moderate but significant increase in activity compared to SDA alone, and FXN can activate both zinc-depleted and zinc-bound forms of ISCU complexed to SDA. Taking into consideration the inhibition of desulfurase activity by zinc-bound ISCU, we characterized wild type ISCU and the M140I, M140L, and M140V variants under both zinc-bound and zinc-depleted conditions, and did not observe significant differences in the biochemical and biophysical properties between wild-type and variants. Importantly, in the absence of FXN, ISCU variants behaved like wild-type and did not stimulate the desulfurase activity of the SDA complex. This study therefore identifies an important regulatory role for zinc-bound ISCU in modulation of the human Fe-S assembly system in vitro and reports no 'FXN bypass' effect on mutations at position Met140 in human ISCU. Furthermore, this study also calls for caution in interpreting studies involving recombinant ISCU by taking into consideration the influence of the bound zinc(II) ion on SDAU complex activity.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Metionina/genética , Zinco/metabolismo , Regulação Alostérica , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Frataxina
9.
Sci Rep ; 6: 20019, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883577

RESUMO

In Friedreich's ataxia (FRDA) patients, diminished frataxin (FXN) in sensory neurons is thought to yield the predominant pathology associated with disease. In this study, we demonstrate successful usage of RNA transcript therapy (RTT) as an exogenous human FXN supplementation strategy in vitro and in vivo, specifically to dorsal root ganglia (DRG). Initially, 293 T cells were transfected with codon optimized human FXN mRNA, which was translated to yield FXN protein. Importantly, FXN was rapidly processed into the mature functional form of FXN (mFXN). Next, FXN mRNA, in the form of lipid nanoparticles (LNPs), was administered intravenously in adult mice. Examination of liver homogenates demonstrated efficient FXN LNP uptake in hepatocytes and revealed that the mitochondrial maturation machinery had efficiently processed all FXN protein to mFXN in ~24 h in vivo. Remarkably, greater than 50% mFXN protein derived from LNPs was detected seven days after intravenous administration of FXN LNPs, suggesting that the half-life of mFXN in vivo exceeds one week. Moreover, when FXN LNPs were delivered by intrathecal administration, we detected recombinant human FXN protein in DRG. These observations provide the first demonstration that RTT can be used for the delivery of therapeutic mRNA to DRG.


Assuntos
Ataxia de Friedreich/genética , Gânglios Espinais/metabolismo , Proteínas de Ligação ao Ferro/genética , Lipídeos , Nanopartículas , RNA Mensageiro , Animais , Modelos Animais de Doenças , Feminino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/terapia , Expressão Gênica , Genes Reporter , Humanos , Injeções Espinhais , Proteínas de Ligação ao Ferro/metabolismo , Lipídeos/química , Fígado/metabolismo , Medições Luminescentes , Camundongos , Imagem Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Biossíntese de Proteínas , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Transdução de Sinais , Transfecção , Frataxina
10.
Neurol Ther ; 5(1): 1-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26894299

RESUMO

Transthyretin (TTR) transports the retinol-binding protein-vitamin A complex and is a minor transporter of thyroxine in blood. Its tetrameric structure undergoes rate-limiting dissociation and monomer misfolding, enabling TTR to aggregate or to become amyloidogenic. Mutations in the TTR gene generally destabilize the tetramer and/or accelerate tetramer dissociation, promoting amyloidogenesis. TTR-related amyloidoses are rare, fatal, protein-misfolding disorders, characterized by formation of soluble aggregates of variable structure and tissue deposition of amyloid. The TTR amyloidoses present with a spectrum of manifestations, encompassing progressive neuropathy and/or cardiomyopathy. Until recently, the only accepted treatment to halt progression of hereditary TTR amyloidosis was liver transplantation, which replaces the hepatic source of mutant TTR with the less amyloidogenic wild-type TTR. Tafamidis meglumine is a rationally designed, non-NSAID benzoxazole derivative that binds with high affinity and selectivity to TTR and kinetically stabilizes the tetramer, slowing monomer formation, misfolding, and amyloidogenesis. Tafamidis is the first pharmacotherapy approved to slow the progression of peripheral neurologic impairment in TTR familial amyloid polyneuropathy. Here we describe the mechanism of action of tafamidis and review the clinical data, demonstrating that tafamidis treatment slows neurologic deterioration and preserves nutritional status, as well as quality of life in patients with early-stage Val30Met amyloidosis.

11.
Sci Rep ; 5: 18251, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26671574

RESUMO

Friedreich's Ataxia is a genetic disease caused by expansion of an intronic trinucleotide repeat in the frataxin (FXN) gene yielding diminished FXN expression and consequently disease. Since increasing FXN protein levels is desirable to ameliorate pathology, we explored the role of major cellular proteostasis pathways and mitochondrial proteases in FXN processing and turnover. We targeted p97/VCP, the ubiquitin proteasome pathway (UPP), and autophagy with chemical inhibitors in cell lines and patient-derived cells. p97 inhibition by DBeQ increased precursor FXN levels, while UPP and autophagic flux modulators had variable effects predominantly on intermediate FXN. Our data suggest that these pathways cannot be modulated to influence mature functional FXN levels. We also targeted known mitochondrial proteases by RNA interference and discovered a novel protease PITRM1 that regulates intermediate FXN levels. Treatment with the aforementioned chemical and genetic modulators did not have a differential effect in patient cells containing lower amounts of FXN. Interestingly, a number of treatments caused a change in total amount of FXN protein, without an effect on mature FXN. Our results imply that regulation of FXN protein levels is complex and that total amounts can be modulated chemically and genetically without altering the absolute amount of mature FXN protein.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteólise , Quinazolinas/farmacologia , Expansão das Repetições de Trinucleotídeos , Ubiquitina/metabolismo , Proteína com Valosina , Frataxina
12.
J Biol Chem ; 289(52): 36018-30, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25336647

RESUMO

Cystathionine ß-synthase (CBS) is a key enzyme in sulfur metabolism, and its inherited deficiency causes homocystinuria. Mammalian CBS is modulated by the binding of S-adenosyl-l-methionine (AdoMet) to its regulatory domain, which activates its catalytic domain. To investigate the underlying mechanism, we performed x-ray crystallography, mutagenesis, and mass spectrometry (MS) on human CBS. The 1.7 Å structure of a AdoMet-bound CBS regulatory domain shows one AdoMet molecule per monomer, at the interface between two constituent modules (CBS-1, CBS-2). AdoMet binding is accompanied by a reorientation between the two modules, relative to the AdoMet-free basal state, to form interactions with AdoMet via residues verified by mutagenesis to be important for AdoMet binding (Phe(443), Asp(444), Gln(445), and Asp(538)) and for AdoMet-driven inter-domain communication (Phe(443), Asp(538)). The observed structural change is further supported by ion mobility MS, showing that as-purified CBS exists in two conformational populations, which converged to one in the presence of AdoMet. We therefore propose that AdoMet-induced conformational change alters the interface and arrangement between the catalytic and regulatory domains within the CBS oligomer, thereby increasing the accessibility of the enzyme active site for catalysis.


Assuntos
Cistationina beta-Sintase/química , S-Adenosilmetionina/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
13.
Proc Natl Acad Sci U S A ; 109(24): 9629-34, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645360

RESUMO

The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A-retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils in elderly patients. Because tetramer dissociation is the rate-limiting step in TTR amyloidogenesis, targeted therapies have focused on small molecules that kinetically stabilize the tetramer, inhibiting TTR amyloid fibril formation. One such compound, tafamidis meglumine (Fx-1006A), has recently completed Phase II/III trials for the treatment of Transthyretin Type Familial Amyloid Polyneuropathy (TTR-FAP) and demonstrated a slowing of disease progression in patients heterozygous for the V30M TTR mutation. Herein we describe the molecular and structural basis of TTR tetramer stabilization by tafamidis. Tafamidis binds selectively and with negative cooperativity (K(d)s ~2 nM and ~200 nM) to the two normally unoccupied thyroxine-binding sites of the tetramer, and kinetically stabilizes TTR. Patient-derived amyloidogenic variants of TTR, including kinetically and thermodynamically less stable mutants, are also stabilized by tafamidis binding. The crystal structure of tafamidis-bound TTR suggests that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.


Assuntos
Amiloide/antagonistas & inibidores , Benzoxazóis/farmacologia , Pré-Albumina/metabolismo , Sítios de Ligação , Humanos , Cinética , Modelos Moleculares
14.
Methods Enzymol ; 439: 339-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18374176

RESUMO

Recent studies implicate a disruption in Rab-mediated protein trafficking as a possible contributing factor to neurodegeneration in Parkinson's disease (PD). Misfolding of the neuronal protein alpha-synuclein (asyn) is implicated in PD. Overexpression of asyn results in cell death in a wide variety of model systems, and in several organisms, including yeast, worms, flies, and rodent primary neurons, this toxicity is suppressed by the overproduction of Rab proteins. These and other findings suggest that asyn interferes with Rab function and provide new avenues for PD drug discovery. This chapter describes two assay formats that have been used successfully to identify small molecules that rescue asyn toxicity in yeast. The 96-well format monitors rescue by optical density and is suitable for screening thousands of compounds. A second format measures viable cells by reduction of the dye alamarBlue, a readout that is compatible with 96-, 384-, and 1536-well plates allowing the screening of large libraries (>100,000 compounds). A secondary assay to eliminate mechanistically undesirable hits is also described.


Assuntos
Saccharomyces cerevisiae/efeitos dos fármacos , alfa-Sinucleína/toxicidade , Proteínas rab de Ligação ao GTP/toxicidade , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Doença de Parkinson/tratamento farmacológico
15.
Mol Cancer Ther ; 3(1): 47-58, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14749475

RESUMO

MLN944 (XR5944) is a novel bis-phenazine that has demonstrated exceptional efficacy against a number of murine and human tumor models. The drug was reported originally as a dual topoisomerase I/II poison, but a precise mechanism of action for this compound remains to be determined. Several lines of evidence, including the marginal ability of MLN944 to stabilize topoisomerase-dependent cleavage, and the sustained potency of MLN944 in mammalian cells with reduced levels of both topoisomerases, suggest that other activities of the drug exist. In this study, we show that MLN944 intercalates into DNA, but has no effect on the catalytic activity of either topoisomerase I or II. MLN944 displays no significant ability to stimulate DNA scission mediated by either topoisomerase I or II compared with camptothecin or etoposide, respectively. In addition, yeast genetic models also point toward a topoisomerase-independent mechanism of action. To examine cell cycle effects, synchronized human HCT116 cells were treated with MLN944, doxorubicin, camptothecin, or a combination of the latter two to mimic a dual topoisomerase poison. MLN944 treatment was found to induce a G(1) and G(2) arrest in cells that is unlike the typical G(2)-M arrest noted with known topoisomerase poisons. Finally, transcriptional profiling analysis of xenograft tumors treated with MLN944 revealed clusters of regulated genes distinct from those observed in irinotecan hydrochloride (CPT-11)-treated tumors. Taken together, these findings suggest that the primary mechanism of action of MLN944 likely involves DNA binding and intercalation, but does not appear to involve topoisomerase inhibition.


Assuntos
Camptotecina/análogos & derivados , Substâncias Intercalantes/farmacologia , Fenazinas/farmacologia , Animais , Antígenos de Neoplasias , Camptotecina/farmacologia , Catálise/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Análise por Conglomerados , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Fase G1/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Substâncias Intercalantes/química , Irinotecano , Masculino , Camundongos , Camundongos Nus , Mitose/efeitos dos fármacos , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Fenazinas/química , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto , Leveduras/efeitos dos fármacos , Leveduras/enzimologia , Leveduras/genética
16.
Eukaryot Cell ; 2(2): 256-64, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12684375

RESUMO

A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


Assuntos
Antifúngicos/farmacologia , Inibidores Enzimáticos/farmacologia , RNA Polimerase III/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica/genética , Humanos , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Subunidades Proteicas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/biossíntese , RNA de Transferência/genética , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
17.
Proc Natl Acad Sci U S A ; 99(3): 1461-6, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11830665

RESUMO

Although the biochemical targets of most drugs are known, the biological consequences of their actions are typically less well understood. In this study, we have used two whole-genome technologies in Saccharomyces cerevisiae to determine the cellular impact of the proteasome inhibitor PS-341. By combining population genomics, the screening of a comprehensive panel of bar-coded mutant strains, and transcript profiling, we have identified the genes and pathways most affected by proteasome inhibition. Many of these function in regulated protein degradation or a subset of mitotic activities. In addition, we identified Rpn4p as the transcription factor most responsible for the cell's ability to compensate for proteasome inhibition. Used together, these complementary technologies provide a general and powerful means to elucidate the cellular ramifications of drug treatment.


Assuntos
Ácidos Borônicos/farmacologia , Cisteína Endopeptidases/metabolismo , Genoma Fúngico , Genômica/métodos , Complexos Multienzimáticos/metabolismo , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Saccharomyces cerevisiae/genética , Bortezomib , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Reparo do DNA , DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Endopeptidases do Proteassoma , RNA Fúngico/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA