Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534474

RESUMO

The neuroinflammatory cascade triggered by traumatic brain injury (TBI) represents a clinically important point for therapeutic intervention. Neuroinflammation generates oxidative stress in the form of high-energy reactive oxygen and nitrogen species, which are key mediators of TBI pathology. The role of the blood-brain barrier (BBB) is essential for proper neuronal function and is vulnerable to oxidative stress. Results herein explore the notion that attenuating oxidative stress at the vasculature after TBI may result in improved BBB integrity and neuroprotection. Utilizing amino-chemistry, a biological construct (designated "dual conjugate" for short) was generated by covalently binding two antioxidant enzymes (superoxide dismutase 1 (SOD-1) and catalase (CAT)) to antibodies specific for ICAM-1. Bioengineering of the conjugate preserved its targeting and enzymatic functions, as evaluated by real-time bioenergetic measurements (via the Seahorse-XF platform), in brain endothelial cells exposed to increasing concentrations of hydrogen peroxide or a superoxide anion donor. Results showed that the dual conjugate effectively mitigated the mitochondrial stress due to oxidative damage. Furthermore, dual conjugate administration also improved BBB and endothelial protection under oxidative insult in an in vitro model of TBI utilizing a software-controlled stretching device that induces a 20% in mechanical strain on the endothelial cells. Additionally, the dual conjugate was also effective in reducing indices of neuroinflammation in a controlled cortical impact (CCI)-TBI animal model. Thus, these studies provide proof of concept that targeted dual antioxidant biologicals may offer a means to regulate oxidative stress-associated cellular damage during neurotrauma.

2.
NeuroImmune Pharm Ther ; 2(4): 387-400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116176

RESUMO

The Cannabinoid 2 Receptor (CB2R) has been found to provide immunological modulation in different cell types. More recently, detection of CB2R in the cerebral endothelium suggests a possible role in the resolution of inflammation at the level of the blood-brain-barrier (BBB). Here, the notion that CB2R upregulation in brain endothelial cells could be exploited to promote vascular protection and BBB integrity was evaluated. Targeting and activation of CB2R was accomplished by a novel and highly specific chromenopyrazole based CB2R agonist, PM289. This study demonstrates that CB2R upregulation is induced as early as 8 h in the cortical vasculature in an experimental mouse model of TBI. Unlike CB2R, CB1R was marginally detected and not significantly induced. In the human brain endothelial cell line, hCMEC/D3 cells, similar induction of CB2R was observed upon stimulation with TNFα. Analysis of transendothelial electrical resistance shows that PM289 markedly prevented the barrier-leakiness induced by TNFα. The BBB is also responsible for maintaining an immunological barrier. The five-fold increase in ICAM1 expression in stimulated endothelial cells was significantly diminished due to CB2R activation. Utilizing wounding assays, results showed that wound repair could be accomplished in nearly half the time when the novel CB2R agonist is present compared to the untreated control. Lastly, mechanistically, the effects of CB2R may be explained by the observed inhibition of the p65 NFκB subunit. Overall, these studies support the notion that targeting and activating CB2R in the brain vasculature could aid in BBB and vascular protection in the context of neuroinflammation.

3.
Neurobiol Dis ; 146: 105131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053430

RESUMO

As researchers across the globe have focused their attention on understanding SARS-CoV-2, the picture that is emerging is that of a virus that has serious effects on the vasculature in multiple organ systems including the cerebral vasculature. Observed effects on the central nervous system include neurological symptoms (headache, nausea, dizziness), fatal microclot formation and in rare cases encephalitis. However, our understanding of how the virus causes these mild to severe neurological symptoms and how the cerebral vasculature is impacted remains unclear. Thus, the results presented in this report explored whether deleterious outcomes from the SARS-CoV-2 viral spike protein on primary human brain microvascular endothelial cells (hBMVECs) could be observed. The spike protein, which plays a key role in receptor recognition, is formed by the S1 subunit containing a receptor binding domain (RBD) and the S2 subunit. First, using postmortem brain tissue, we show that the angiotensin converting enzyme 2 or ACE2 (a known binding target for the SARS-CoV-2 spike protein), is ubiquitously expressed throughout various vessel calibers in the frontal cortex. Moreover, ACE2 expression was upregulated in cases of hypertension and dementia. ACE2 was also detectable in primary hBMVECs maintained under cell culture conditions. Analysis of cell viability revealed that neither the S1, S2 or a truncated form of the S1 containing only the RBD had minimal effects on hBMVEC viability within a 48 h exposure window. Introduction of spike proteins to invitro models of the blood-brain barrier (BBB) showed significant changes to barrier properties. Key to our findings is the demonstration that S1 promotes loss of barrier integrity in an advanced 3D microfluidic model of the human BBB, a platform that more closely resembles the physiological conditions at this CNS interface. Evidence provided suggests that the SARS-CoV-2 spike proteins trigger a pro-inflammatory response on brain endothelial cells that may contribute to an altered state of BBB function. Together, these results are the first to show the direct impact that the SARS-CoV-2 spike protein could have on brain endothelial cells; thereby offering a plausible explanation for the neurological consequences seen in COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , COVID-19 , Permeabilidade Capilar/efeitos dos fármacos , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Demência/metabolismo , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Lobo Frontal/metabolismo , Humanos , Hipertensão/metabolismo , Técnicas In Vitro , Junções Intercelulares/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Dispositivos Lab-On-A-Chip , Metaloproteinases da Matriz/efeitos dos fármacos , Cultura Primária de Células , Domínios Proteicos , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia
4.
Behav Pharmacol ; 30(7): 566-573, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268871

RESUMO

Recreational abuse of illicit synthetic cathinones is an ongoing public health concern. Recent studies indicate that the methcathinone derivative 4-methylmethcathinone (4-MMC) produces behavioral and neurochemical effects similar to the entactogen 3,4-methylenedioxymethamphetamine (MDMA). Whereas polysubstance abuse is common, most preclinical studies of drug abuse liability only evaluate the effects of single drugs. Utilizing the locomotor sensitization paradigm, the present study assessed the combined locomotor stimulant effects of 4-MMC and MDMA for induction of sensitization following repeated administration and for expression of sensitization to a challenge dose of either substance alone after a 10-day period of drug abstinence. Male Sprague-Dawley rats received once daily intraperitoneal injections of saline, 4-MMC (1.0 mg/kg or 5.0 mg/kg), MDMA (3.0 mg/kg), or a mixture containing 4-MMC (1.0 mg/kg or 5.0 mg/kg) + MDMA (3.0 mg/kg) for 7 consecutive days. Following a 10-day drug-free period, rats were given a single intraperitoneal injection of either saline, 4-MMC (1.0 or 5.0 mg/kg), or 3.0 mg/kg MDMA. Activity was recorded for 1 h immediately before and 1 h immediately after injections on days 1, 7, and 17. 4-MMC treatment failed to induce locomotor sensitization, but, when combined with MDMA, sensitization was induced to a greater extent than with MDMA alone. Furthermore, the expression of sensitization to a subsequent challenge dose of MDMA was observed only in animals previously exposed to MDMA or a 5.0 mg/kg 4-MMC + MDMA mixture. In consideration of these findings along with the fact that 4-MMC has similar neurochemical actions to MDMA, further research may be warranted to determine the abuse liability of drug mixtures including 4-MMC and MDMA.


Assuntos
Locomoção/efeitos dos fármacos , Metanfetamina/análogos & derivados , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Alucinógenos/farmacologia , Injeções Intraperitoneais , Masculino , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA