Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(31): 6231-6246, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051502

RESUMO

Biomedical applications such as drug delivery, tissue engineering, and functional surface coating rely on switchable adsorption and desorption of specialized guest molecules. Poly(dehydroalanine), a polyzwitterion containing pH-dependent positive and negative charges, shows promise for such reversible loading, especially when integrated into a gel network. Herein, we present the fabrication of poly(dehydroalanine)-derived gels of different size scales and evaluate them with respect to their practical use in biomedicine. Already existing protocols for bulk gelation were remodeled to derive suitable reaction conditions for droplet-based microfluidic synthesis. Depending on the layout of the microfluidic chip, microgels with a size of approximately 30 µm or 200 µm were obtained, whose crosslinking density can be increased by implementing a multi-arm crosslinker. We analyzed the effects of the crosslinker species on composition, permeability, and softness and show that the microgels exhibit advantageous properties inherent to zwitterionic polymer systems, including high hydrophilicity as well as pH- and ionic strength-sensitivity. We demonstrate pH-regulated uptake and release of fluorescent model dyes before testing the adsorption of a small antimicrobial peptide, LL-37. Quantification of the peptide accommodated within the microgels reveals the impact of size and crosslinking density of the microgels. Biocompatibility of the microgels was validated by cell tests.


Assuntos
Microesferas , Concentração de Íons de Hidrogênio , Microgéis/química , Peptídeos/química , Géis/química , Microfluídica , Humanos , Peptídeos Catiônicos Antimicrobianos/química
2.
Biomacromolecules ; 25(6): 3807-3822, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38807305

RESUMO

Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining ß4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of ß4GalT and ß3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.


Assuntos
Enzimas Imobilizadas , Glicosiltransferases , Microgéis , Polissacarídeos , Enzimas Imobilizadas/química , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Microgéis/química , Biocatálise
3.
Adv Healthc Mater ; : e2302957, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988182

RESUMO

Microporous annealed particle (MAP) scaffolds are investigated for their application as injectable 3D constructs in the field of regenerative medicine and tissue repair. While available MAP scaffolds provide a stable interlinked matrix of microgels for cell culture, the infiltration depth and space for cells to grow inside the scaffolds is pre-determined by the void fraction during the assembly. In the case of MAP scaffolds fabricated from interlinked spherical microgels, a cellularity gradient can be observed with the highest cell density on the scaffold surface. Additionally, the interlinked microgel network limits the ability of cells to remodel their environment, which contradicts native tissue dynamics. In this work, a cell-induced interlinking method for MAP scaffold formation is established, which avoids the necessity of chemical crosslinkers and pre-engineered pores to achieve micro- or macropores in these 3D frameworks. This method enables cells to self-organize with microgels into dynamic tissue constructs, which can be further controlled by altering the microgel properties, the cell/microgel ratio, and well shape. To form a cell-induced interlinked scaffold, the cells are mixed with dextran-based microgels and function as a glue between the microgels, resulting in a more homogenous cell distribution throughout the scaffold with efficient cell-cell interactions.

4.
Small ; 19(45): e2303783, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434076

RESUMO

Hydrogels, as well as colloidal hydrogels (microgels), are important materials for a large variety of applications in the biomedical field. Microgels with a controlled pore size (meso- and macropores) are required for efficient nutrient support, modulation of cell adhesion, removal of metabolic products in cell cultures, and probiotic loading. Common microgel fabrication techniques do not provide sufficient control over pore sizes and geometry. In this work, the natural polysaccharide dextran modified with methacrylate groups is used to synthesize highly monodisperse meso- and macroporous microgels in a size range of 100-150 µm via photo cross-linking in microfluidic droplets. The size of mesopores is varied by the concentration of dextran methacrylate chains in the droplets (50-200 g L-1 ) and the size of macropores is regulated by the integration of pH-degradable supramacromolecular nanogels with diameters of 300 and 700 nm as sacrificial templates. Using permeability assays combined with confocal laser scanning microscopy, it is demonstrated that functional dextran-based microgels with uniform and defined pores could be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA