Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mar Pollut Bull ; 185(Pt B): 114340, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410193

RESUMO

The study aims to unravel the variability of Dinophysis spp. and their alleged toxins in conjunction with environmental drivers in Ambon Bay. Phytoplankton samples, lipophilic toxins and physiochemical water properties were analysed during a 1.5-year period. Three Dinophysis species (D. miles, D. caudata, and D. acuminata) were found in plankton samples, of which D. miles was the most abundant and persistently occurring species. Pectenotoxin-2 (PTX2) and its secoacid (PTX2sa) were detected throughout, and PTX2sa levels strongly correlated with D. miles cell abundance. The toxin showed a positive correlation with temperature, which may suggest that D. miles cells contain rather constant PTX2sa during warmer months. Dissolved nitrate concentrations were found to play a major role in regulating cell abundances and toxin levels. This study adds adequate information regarding marine biotoxins and potentially toxic species for future Harmful Algal Bloom management in Ambon and Indonesia at large.


Assuntos
Baías , Dinoflagellida , Indonésia , Proliferação Nociva de Algas , Toxinas Marinhas
3.
Mar Pollut Bull ; 166: 112269, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33752158

RESUMO

The present study aimed to document dinocyst ecological preferences in Ambon Bay, Eastern Indonesia, and to investigate if the bay sediments serve as a seedbank for toxic bloom events. To this end, dinocyst and geochemical analyses of surface sediment samples were performed, along with physicochemical water column parameters. Twentythree dinocyst species were identified, and high dinocyst concentrations (up to ~12,000 cysts g-1 dry sediment) were found in the inner bay. Environmental factors such as surface water temperature and salinity generally played an important role in dinocyst distribution. The concentration of Polysphaeridium zoharyi cysts showed a strong positive correlation with phosphorus. A statistically significant correlation was also found with the concentration of other autotrophic dinocysts in the sediments, and an inverse correlation was observed with the sediment C/N ratio. Cysts may serve as seedbanks for Pyrodinium bahamense blooms in the area.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Baías , Monitoramento Ambiental , Sedimentos Geológicos , Indonésia , Temperatura
5.
Environ Sci Pollut Res Int ; 28(4): 3837-3851, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803614

RESUMO

Harmful algal blooms (HABs) are mostly phytoplankton blooms, which have detrimental environmental and socioeconomic impacts. The Mediterranean Sea due to its enclosed nature is of special concern since it has an enormously rich native biodiversity. Though, it is also the world's most invaded marine ecosystem and is considered at very high risk of future invasions. The aim of this review study is to explore the origins, establishment, environmental, and socioeconomic impacts of HABs caused by nonnative algal species in the Mediterranean Sea. Based on this, it is also discussed whether HABs form an increasing threat in the basin, and what could possibly be done to prevent or to minimize their impacts. The increasing rate of their introduction and the harmful impacts that they have on the environment, economy, and human health makes it important to have accurate knowledge about HABs. Anthropogenic activities and climate change are considered the main contributors of alien invasions but also the main enablers of HAB events. Mediterranean HABs are adequately studied, but there are no studies purposefully concerning invasive microalgae species in the basin. In the present study, 20 species have been identified, and an attempt has been made to collect their introduction information, as well as known or suspected impacts. Future research should be focused on data mining, current legislation updates, and monitoring of Mediterranean coastlines.


Assuntos
Ecossistema , Proliferação Nociva de Algas , Mudança Climática , Humanos , Espécies Introduzidas , Mar Mediterrâneo
7.
Mar Pollut Bull ; 150: 110778, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31910525

RESUMO

The aim of the present work was to unravel which environmental drivers govern the dynamics of toxic dinoflagellate abundance as well as their associated paralytic shellfish toxins (PSTs), diarrhetic shellfish toxins (DSTs) and pectenotoxin-2 (PTX2) in Ambon Bay, Eastern Indonesia. Weather, biological and physicochemical parameters were investigated weekly over a 7-month period. Both PSTs and PTX2 were detected at low levels, yet they persisted throughout the research. Meanwhile, DSTs were absent. A strong correlation was found between total particulate PST and Gymnodinium catenatum cell abundance, implying that this species was the main producer of this toxin. PTX2 was positively correlated with Dinophysis miles cell abundance. Vertical mixing, tidal elevation and irradiance attenuation were the main environmental factors that regulated both toxins and cell abundances, while nutrients showed only weak correlations. The present study indicates that dinoflagellate toxins form a potential environmental, economic and health risk in this Eastern Indonesian bay.


Assuntos
Dinoflagellida , Toxinas Marinhas , Baías , Monitoramento Ambiental , Indonésia , Frutos do Mar
8.
Harmful Algae ; 90: 101708, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31806164

RESUMO

Within the past few decades, harmful algal blooms (HABs) have occurred frequently in Indonesian waters, resulting in environmental degradation, economic loss and human health problems. So far, HAB related studies mainly addressed ecological traits and species distribution, yet toxin measurements were virtually absent for Indonesian waters. The aim of the present study was to explore variability of the potentially toxic marine diatom genus Pseudo-nitzschia, as well as its neurotoxin domoic acid as a function of environmental conditions in Ambon Bay, eastern Indonesia. Weekly phytoplankton samples, oceanographic (CTD, nutrients) and meteorological (precipitation, wind) parameters were analyzed at 5 stations in the bay during the dry and wet seasons of 2018. Liquid chromatography - tandem mass spectrometry (LC-MS/MS) was used to detect particulate DA (pDA). Vegetative cells of Pseudo-nitzschia spp. and pDA were found in 98.6% and 51.4% of the samples, respectively. pDA levels were low, yet detected throughout the campaign, implying that Ambon Bay might potentially be subject to amnesic shellfish poisoning. The highest levels of both Pseudo-nitzschia spp. cell abundance and pDA were found in the wet season, showing a strong positive correlation between both parameters, compared to the dry season, (r = 0.87 and r = 0.66 (p < 0.01), respectively). Statistical analyses revealed that temperature and mixed layer depth positively correlated with Pseudo-nitzschia spp. and pDA during the dry season, while ammonium showed positive correlations in both seasons. This study represents the first successful investigation of the presence and variability of Pseudo-nitzschia spp. and its neurotoxin DA in Indonesian waters.


Assuntos
Diatomáceas , Cromatografia Líquida , Humanos , Indonésia , Ácido Caínico/análogos & derivados , Espectrometria de Massas em Tandem
9.
J Phycol ; 55(2): 314-328, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30449029

RESUMO

Diatoms are one of the dominant groups in phytoplankton communities of the western Antarctic Peninsula (WAP). Although generally well-studied, little is known about size dependent photophysiological responses in diatom bloom formation and succession. To increase this understanding, four Antarctic diatom species covering two orders of magnitude in cell size were isolated in northern Marguerite Bay (WAP). Fragilariopsis sp., Pseudo-nitzschia cf. subcurvata, Thalassiosira cf. antarctica, and Proboscia cf. alata were acclimated to three different irradiances after which photophysiology, electron transport, carbon fixation, and growth were assessed. The small species Fragilariopsis sp., Pseudo-nitzschia cf. subcurvata, and large species Proboscia cf. alata showed similar photoacclimation to higher irradiances with a decrease in cellular chlorophyll a and an increase in chlorophyll a specific absorption and xanthophyll cycle pigments and activity. In contrast, pigment concentrations and absorption remained unaffected by higher irradiances in the large species Thalassiosira cf. antarctica. Overall, the small species showed significantly higher growth rates compared to the large species, which was related to relatively high light harvesting capacity and electron transport rates in the smaller species. However, photophysiological responses related to photoinhibition and photoprotection and carbon fixation showed no relationship with cell size. This study supports the dominance of small diatoms at low irradiances during winter and early spring, but does not provide photophysiological evidence for the dominance of large diatoms during the phytoplankton bloom in the WAP. This suggests that other factors such as grazing and nutrient availability are likely to play a major role in diatom bloom formation.


Assuntos
Diatomáceas , Regiões Antárticas , Baías , Clorofila A , Fitoplâncton
11.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760117

RESUMO

The West Antarctic Peninsula (WAP) is a climatically sensitive region where periods of strong warming have caused significant changes in the marine ecosystem and food-web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food-web components. Here, we analysed the inter-decadal time series of year-round chlorophyll-a (Chl) collected from three stations along the coastal WAP: Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island and Rothera Station on Adelaide Island. There were trends towards increased phytoplankton biomass at Carlini Station (PC) and Palmer Station, while phytoplankton biomass declined significantly at Rothera Station over the studied period. The impacts of two relevant climate modes to the WAP, the El Niño-Southern Oscillation and the Southern Annular Mode, on winter and spring phytoplankton biomass appear to be different among the three sampling stations, suggesting an important role of local-scale forcing than large-scale forcing on phytoplankton dynamics at each station. The inter-annual variability of seasonal bloom progression derived from considering all three stations together captured ecologically meaningful, seasonally co-occurring bloom patterns which were primarily constrained by water-column stability strength. Our findings highlight a coupled link between phytoplankton and physical and climate dynamics along the coastal WAP, which may improve our understanding of overall WAP food-web responses to climate change and variability.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.


Assuntos
Biomassa , Monitoramento Ambiental , Fitoplâncton/metabolismo , Análise de Variância , Regiões Antárticas , Clorofila/análogos & derivados , Clorofila/metabolismo , Mudança Climática , Cadeia Alimentar , Fatores de Tempo
12.
Environ Technol ; 36(1-4): 435-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25182049

RESUMO

Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5 µL L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5 µL L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5 µL L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50 mg L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant.


Assuntos
Desinfecção/métodos , Plâncton/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacocinética , Água do Mar/química , Poluentes da Água/isolamento & purificação , Purificação da Água/métodos , Animais , Apoptose/efeitos dos fármacos , Desinfetantes/farmacologia , Plâncton/fisiologia , Compostos de Amônio Quaternário/química , Água do Mar/microbiologia , Navios , Eliminação de Resíduos Líquidos/métodos
13.
J Exp Biol ; 216(Pt 16): 3090-5, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23619410

RESUMO

Like other obligate asexuals, bdelloid rotifers are expected to suffer from degradation of their genomes through processes including the accumulation of deleterious mutations. However, sequence-based analyses in this regard remain inconclusive. Instead of looking for historical footprints of mutations in these ancient asexuals, we directly examined the susceptibility and ability to repair point mutations by the bdelloid Philodina roseola by inducing cyclobutane-pyrimidine dimers (CPDs) via exposure to UVB radiation (280-320 nm). For comparison, we performed analogous experiments with the facultative asexual monogonont rotifer Brachionus rubens. Different strategies were found for the two species. Philodina roseola appeared to shield itself from CPD induction through uncharacterized UV-absorbing compounds and, except for the genome reconstruction that occurs after desiccation, was largely unable to repair UVB-induced damage. By contrast, B. rubens was more susceptible to UVB irradiation, but could repair all induced damage in ~2 h. In addition, whereas UV irradiation had a significant negative impact on the reproductive output of P. roseola, and especially so after desiccation, that of B. rubens was unaffected. Although the strategy of P. roseola might suffice under natural conditions where UVB irradiation is less intense, the lack of any immediate CPD repair mechanisms in this species remains perplexing. It remains to be investigated how typical these results are for bdelloids as a group and therefore how reliant these animals are on desiccation-dependent genome repair to correct potential DNA damage given their obligate asexual lifestyle.


Assuntos
Mutagênese/efeitos da radiação , Mutação/genética , Mutação/efeitos da radiação , Reprodução Assexuada/efeitos da radiação , Rotíferos/genética , Rotíferos/efeitos da radiação , Raios Ultravioleta , Animais , Dímeros de Pirimidina/metabolismo
14.
Vet Parasitol ; 194(1): 9-15, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23339847

RESUMO

Toxoplasma gondii is an intracellular coccidian parasite found worldwide and is known to infect virtually all warm-blooded animals. It requires a cat (family Felidae) to complete its full life cycle. Despite the absence of wild felids on the Arctic archipelago of Svalbard, T. gondii has been found in resident predators such as the arctic fox and polar bear. It has therefore been suggested that T. gondii may enter this ecosystem via migratory birds. The objective of this study was to identify locations where goose populations may become infected with T. gondii, and to investigate the dynamics of T. gondii specific antibodies. Single blood samples of both adults and juveniles were collected from selected goose species (Anser anser, A. brachyrhynchus, Branta canadensis, B. leucopsis) at Arctic brood-rearing areas in Russia and on Svalbard, and temperate wintering grounds in the Netherlands and Denmark (migratory populations) as well as temperate brood-rearing grounds (the Netherlands, non-migratory populations). A modified agglutination test was used on serum, for detection of antibodies against T. gondii. Occasional repeated annual sampling of individual adults was performed to determine the antibody dynamics. Adults were found seropositive at all locations (Arctic and temperate, brood-rearing and wintering grounds) with low seroprevalence in brood-rearing birds on temperate grounds. As no juvenile geese were found seropositive at any brood-rearing location, but nine month old geese were found seropositive during spring migration we conclude that geese, irrespective of species and migration, encounter T. gondii infection in wintering areas. In re-sampled birds on Svalbard significant seroreversion was observed, with 42% of seropositive adults showing no detectable antibodies after 12 months, while the proportion of seroconversion was only 3%. Modelled variation of seroprevalence with field data on antibody longevity and parasite transmission suggests seroprevalence of a population within a range of 5.2-19.9%, in line with measured values. The high occurrence of seroreversion compared to the low occurrence of seroconversion hampers analysis of species- or site-specific patterns, but explains the absence of an increase in seroprevalence with age and the observed variation in antibody titre. These findings imply that even though infection rate is low, adults introduce T. gondii to the high Arctic ecosystem following infection in temperate regions.


Assuntos
Doenças das Aves/epidemiologia , Gansos , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/epidemiologia , Fatores Etários , Testes de Aglutinação/veterinária , Migração Animal , Animais , Anticorpos Antiprotozoários/sangue , Regiões Árticas , Doenças das Aves/parasitologia , Aves , Gatos/fisiologia , Europa (Continente)/epidemiologia , Geografia , Densidade Demográfica , Prevalência , Estações do Ano , Estudos Soroepidemiológicos , Especificidade da Espécie , Toxoplasmose Animal/parasitologia
15.
J Phycol ; 48(1): 45-59, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27009649

RESUMO

The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)-replete and Fe-limiting conditions. Both species showed xanthophyll de-epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv /Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers.

16.
FEMS Microbiol Ecol ; 76(3): 413-27, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21303395

RESUMO

Antarctic coastal waters undergo major physical alterations during summer. Increased temperatures induce sea-ice melting and glacial melt water input, leading to strong stratification of the upper water column. We investigated the composition of micro-eukaryotic and bacterial communities in Ryder Bay, Antarctic Peninsula, during and after summertime melt water stratification, applying community fingerprinting (denaturing gradient gel electrophoresis) and sequencing analysis of partial 18S and 16S rRNA genes. Community fingerprinting of the eukaryotic community revealed two major patterns, coinciding with a period of melt water stratification, followed by a period characterized by regular wind-induced breakdown of surface stratification. During the first stratified period, we observed depth-related differences in eukaryotic fingerprints while differences in bacterial fingerprints were weak. Wind-induced breakdown of the melt water layer caused a shift in the eukaryotic community from an Actinocyclus sp.- to a Thalassiosira sp.-dominated community. In addition, a distinct transition in the bacterial community was found, but with a few days' delay, suggesting a response to the changes in the eukaryotic community rather than to the mixing event itself. Sequence analysis revealed a shift from an Alpha- and Gammaproteobacteria to a Cytophaga-Flavobacterium-Bacteroides-dominated community under mixed conditions. Our results show that melt water stratification and the transition to nonstabilized Antarctic surface waters may have an impact not only on micro-eukaryotic but also bacterial community composition.


Assuntos
Bactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Ecossistema , Estações do Ano , Microbiologia da Água , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Diatomáceas/classificação , Diatomáceas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
17.
FEMS Microbiol Ecol ; 73(1): 68-82, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20455939

RESUMO

Despite extensive microbial biodiversity studies around the globe, studies focusing on diversity and community composition of Bacteria in Antarctic coastal regions are still scarce. Here, we studied the diversity and development of bacterioplankton communities from Prydz Bay (Eastern Antarctic) during spring and early summer 2002-2003. Additionally, we investigated the possible shaping effects of solar UV radiation (UV-R: 280-400 nm) on bacterioplankton communities incubated for 13-14 days in 650-L minicosm tanks. Ribosomal DNA sequence analysis of the natural bacterioplankton communities revealed an initial springtime community composed of three evenly abundant bacterial classes: Cytophaga-Flavobacteria-Bacteroidetes (CFB), Gammaproteobacteria and Alphaproteobacteria. At the end of spring, a shift occurred toward a CFB-dominated community, most likely a response to the onset of a springtime phytoplankton bloom. The tail end of Prydz Bay clone library diversity revealed sequences related to Deltaproteobacteria, Verrucomicrobiales, Planctomycetes, Gemmatimonadetes and an unclassified bacterium (ANT4E12). Minicosm experiments showed that incubation time was the principal determinant of bacterial community composition and that UV-R treatment significantly changed the composition in only two of the four experiments. Thus, the successional maturity of the microbial community in our minicosm studies appears to be a greater determinant of bacterial community composition rather than the nonprofound and subtle effects of UV-R.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/efeitos da radiação , Biodiversidade , Estações do Ano , Regiões Antárticas , Bactérias/genética , DNA Bacteriano/genética , Biblioteca Gênica , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/efeitos da radiação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Raios Ultravioleta
18.
Photochem Photobiol ; 85(6): 1336-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19709386

RESUMO

Photoacclimation properties were investigated in two marine microalgae exposed to four ambient irradiance conditions: static photosynthetically active radiation (PAR: 400-700 nm), static PAR + UVR (280-700 nm), dynamic PAR and dynamic PAR + UVR. High light acclimated cultures of Thalassiosira weissflogii and Dunaliella tertiolecta were exposed outdoors for a maximum of 7 days. Dynamic irradiance was established by computer controlled vertical movement of 2 L bottles in a water filled basin. Immediate (<24 h), short-term (1-3 days) and long-term (4-7 days) photoacclimation was followed for antioxidants (superoxide dismutase, ascorbate peroxidase and glutathione cycling), growth and pigment pools. Changes in UVR sensitivity during photoacclimation were monitored by measuring UVR-induced inhibition of carbon assimilation under standardized UV conditions using an indoor solar simulator. Both species showed immediate antioxidant responses due to their transfer to the outdoor conditions. Furthermore, upon outdoor exposure, carbon assimilation and growth rates were reduced in both species compared with initial conditions; however, these effects were most pronounced in D. tertiolecta. Outdoor UV exposure did not alter antioxidant levels when compared with PAR-only controls in both species. In contrast, growth was significantly affected in the static UVR cultures, concurrent with significantly enhanced UVR resistance. We conclude that antioxidants play a minor role in the reinforcement of natural UVR resistance in T. weissflogii and D. tertiolecta.


Assuntos
Antioxidantes/química , Diatomáceas/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios Ultravioleta , Antioxidantes/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Glutationa Redutase/química , Biologia Marinha , Luz Solar
19.
FEMS Microbiol Ecol ; 66(2): 352-66, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18801046

RESUMO

In the light of the predicted global climate change, it is essential that the status and diversity of polar microbial communities is described and understood. In the present study, molecular tools were used to investigate the marine eukaryotic communities of Prydz Bay, Eastern Antarctica, from November 2002 to January 2003. Additionally, we conducted four series of minicosm experiments, where natural Prydz Bay communities were incubated under six different irradiation regimes, in order to investigate the effects of natural UV radiation on marine microbial eukaryotes. Denaturing gradient gel electrophoresis (DGGE) and 18S rRNA gene sequencing revealed a eukaryotic Shannon diversity index averaging 2.26 and 2.12, respectively. Phylogenetic analysis of 472 sequenced clones revealed 47 phylotypes, belonging to the Dinophyceae, Stramenopiles, Choanoflagellidae, Ciliophora, Cercozoa and Metazoa. Throughout the studied period, three communities were distinguished: a postwinter/early spring community comprising dinoflagellates, ciliates, cercozoans, stramenopiles, viridiplantae, haptophytes and metazoans; a dinoflagellate-dominated community; and a diatom-dominated community that developed after sea ice breakup. DGGE analysis showed that size fraction and time had a strong shaping effect on the community composition; however, a significant contribution of natural UV irradiance towards microeukaryotic community composition could not be detected. Overall, dinoflagellates dominated our samples and their diversity suggests that they fulfill an important role in Antarctic coastal marine ecosystems preceding ice breakup as well as between phytoplankton bloom events.


Assuntos
Ecossistema , Células Eucarióticas , Biologia Marinha , Raios Ultravioleta , Animais , Regiões Antárticas , Cilióforos/classificação , Cilióforos/genética , Cilióforos/fisiologia , Cilióforos/efeitos da radiação , DNA Ribossômico/análise , Dinoflagellida/classificação , Dinoflagellida/genética , Dinoflagellida/fisiologia , Dinoflagellida/efeitos da radiação , Células Eucarióticas/classificação , Células Eucarióticas/fisiologia , Células Eucarióticas/efeitos da radiação , Dados de Sequência Molecular , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
20.
J Phycol ; 44(4): 957-66, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27041614

RESUMO

The enzyme superoxide dismutase (SOD) holds a key position in the microalgal antioxidant network. The present research focused on oxidative stress responses in the Antarctic diatom Chaetoceros brevis F. Schütt during transition to excess (including ultraviolet radiation [UVR]) and limiting irradiance conditions. Over a 4 d period, cellular responses of thiobarbituric acid reactive substances (TBARS, a general oxidative stress indicator), SOD activity, photosynthetic and xanthophyll cycle pigments, PSII efficiency, and growth were determined. In addition, oxidative responses were measured during a daily cycle. Changing irradiance conditions significantly affected growth rates of C. brevis. PSII efficiency decreased significantly during periodic excess irradiance and increased under low irradiance conditions. Transition to excess irradiance increased the ratio of xanthophyll to light-harvesting pigments, whereas the opposite was observed for cultures transferred to low irradiance. This acclimation process was completed after 2 d in the new irradiance environment. SOD activity increased significantly after the first day regardless of the new irradiance environment but returned to preexposure values on the fourth day. We hypothesize that SOD activity may be temporarily elevated in C. brevis after irradiance shifts, thereby reducing oxidative stress when photoacclimation is in progress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA