Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37108864

RESUMO

d-lactic acid, a chiral organic acid, can enhance the thermal stability of polylactic acid plastics. Microorganisms such as the yeast Pichia pastoris, which lack the natural ability to produce or accumulate high amounts of d-lactic acid, have been metabolically engineered to produce it in high titers. However, tolerance to d-lactic acid remains a challenge. In this study, we demonstrate that cell flocculation improves tolerance to d-lactic acid and increases d-lactic acid production in Pichia pastoris. By incorporating a flocculation gene from Saccharomyces cerevisiae (ScFLO1) into P. pastoris KM71, we created a strain (KM71-ScFlo1) that demonstrated up to a 1.6-fold improvement in specific growth rate at high d-lactic acid concentrations. Furthermore, integrating a d-lactate dehydrogenase gene from Leuconostoc pseudomesenteroides (LpDLDH) into KM71-ScFlo1 resulted in an engineered strain (KM71-ScFlo1-LpDLDH) that could produce d-lactic acid at a titer of 5.12 ± 0.35 g/L in 48 h, a 2.6-fold improvement over the control strain lacking ScFLO1 expression. Transcriptomics analysis of this strain provided insights into the mechanism of increased tolerance to d-lactic acid, including the upregulations of genes involved in lactate transport and iron metabolism. Overall, our work represents an advancement in the efficient microbial production of d-lactic acid by manipulating yeast flocculation.

2.
J Fungi (Basel) ; 8(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893135

RESUMO

Concerns over climate change have led to increased interest in renewable fuels in recent years. Microbial production of advanced fuels from renewable and readily available carbon sources has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the yeast Pichia pastoris, an industrial powerhouse in heterologous enzyme production, to produce the advanced biofuel isobutanol from sugarcane trash hydrolysates. Our strategy involved overexpressing a heterologous xylose isomerase and the endogenous xylulokinase to enable the yeast to consume both C5 and C6 sugars in biomass. To enable the yeast to produce isobutanol, we then overexpressed the endogenous amino acid biosynthetic pathway and the 2-keto acid degradation pathway. The engineered strains produced isobutanol at a titer of up to 48.2 ± 1.7 mg/L directly from a minimal medium containing sugarcane trash hydrolysates as the sole carbon source. To our knowledge, this is the first demonstration of advanced biofuel production using agricultural waste-derived hydrolysates in the yeast P. pastoris. We envision that our work will pave the way for a scalable route to this advanced biofuel and further establish P. pastoris as a versatile production platform for fuels and high-value chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA