Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37761159

RESUMO

While extensive efforts have been made over the past two decades to understand how cork becomes contaminated by 2,4,6-trichloroanisole (TCA), the nature of its bond to cork remains unclear. A deeper understanding of this interaction is crucial in designing processes to effectively remove TCA from cork stoppers. This study presents an investigation into the thermal desorption of TCA from cork under vacuum conditions. To facilitate detection by a quadrupole mass spectrometer, samples were artificially contaminated with sufficient TCA. A calibration system was developed to determine the absolute rate of TCA released from the cork. Desorption spectra revealed two peaks at 80 °C and 170 °C. Despite the known variability of cork, repeated measurements demonstrated reasonable repeatability. The low-temperature peak decreased with time and after preheating the sample to 50 °C. It is proposed that the high-temperature peak corresponds to TCA bonded to the cork material. Experiments with naturally contaminated cork stoppers revealed a significant reduction in the amount of releasable TCA following a vacuum-heating process. This study provides an insightful discussion on the adsorption of TCA on cork and proposes an estimate for the adsorption energy. Furthermore, it discloses a process capable of removing TCA from natural cork stoppers.

2.
Phys Chem Chem Phys ; 25(37): 25361-25367, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703052

RESUMO

Trichloroanisole (TCA) is one of the most significant contaminants in cork stoppers. The presence of TCA leads to an unpleasant odor known as "cork taint", resulting in high economic losses for the cork and wine industries. Hence, the detection, quantification, and characterization of TCA are essential to address this concern. The present study investigates the electron-driven fragmentation pathways of TCA through electron ionization mass spectrometry as a function of electron energy (0-100 eV), and the results are supported by theoretical characterization of ionization potentials, dissociation thresholds, and electron ionization cross sections. The appearance energies of ten cations were measured, including the first experimental evaluation of the molecule's ionization energy at 8.8 ± 0.3 eV, in excellent agreement with the calculations (8.83 eV). For lower energies, around 20 eV, the parent cation accounted for more than 60% of the total ion signal, followed by its demethylated fragment. Taken together, these ion signals could be used as fingerprints of TCA in industrial quality control by low-energy electron ionization mass spectrometry. Fifty other fragments have been identified at higher electron energies, revealing the very rich fragmentation pattern of TCA.

3.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37629181

RESUMO

Over the last few years, there has been increasing interest in the use of amorphous carbon thin films with low secondary electron yield (SEY) to mitigate electron multipacting in particle accelerators and RF devices. Previous works found that the SEY increases with the amount of incorporated hydrogen and correlates with the Tauc gap. In this work, we analyse films produced by magnetron sputtering with different contents of hydrogen and deuterium incorporated via the target poisoning and sputtering of CxDy molecules. XPS was implemented to estimate the phase composition of the films. The maximal SEY was found to decrease linearly with the fraction of the graphitic phase in the films. These results are supported by Raman scattering and UPS measurements. The graphitic phase decreases almost linearly for hydrogen and deuterium concentrations between 12% and 46% (at.), but abruptly decreases when the concentration reaches 53%. This vanishing of the graphitic phase is accompanied by a strong increase of SEY and the Tauc gap. These results suggest that the SEY is not dictated directly by the concentration of H/D, but by the fraction of the graphitic phase in the film. The results are supported by an original model used to calculate the SEY of films consisting of a mixture of graphitic and polymeric phases.


Assuntos
Elétrons , Grafite , Deutério , Filmes Cinematográficos , Hidrogênio , Fuligem
4.
J Agric Food Chem ; 70(22): 6747-6754, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612600

RESUMO

Cork stoppers are the preferred choice for sealing bottled wines around the world. However, the quality of cork stoppers is also defined by the presence of 2,4,6-trichloroanisole (TCA), which gives the wine an unpleasant moldy/musty taste. It is a matter of concern for both cork stopper manufacturers and wine producers whether TCA can be transported between stoppers. As little is known about cross contamination between stoppers, this work provides enough experimental data to discuss the extent of TCA transfer in naturally contaminated stoppers in the liquid and gas phase that can be useful to the cork industry and the wine industry. We found that when a clean stopper is soaked together with a contaminated one in hydro-alcoholic solution, 12% of the TCA can be transferred. In gas-phase contamination, only stoppers with 12 ng/L, or more, contaminate clean stoppers when enclosed together for several days. In a second experiment, where clean corks were exposed to a controlled contaminated environment, it was found that TCA contamination was not confined to the outermost layer of the stoppers. Based on these findings, some recommendations are given to prevent TCA cross contamination between stoppers during the cork stopper manufacturing, storage, wine making, and bottling.


Assuntos
Contaminação de Alimentos , Vinho , Anisóis , Contaminação de Alimentos/análise , Paladar , Vinho/análise
5.
Chemistry ; 18(40): 12628-32, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22933355

RESUMO

Reduction by magnetic nano-Fe(3)O(4)-Ni: a facile, simple and environmentally friendly hydrogen-transfer reaction that takes place over recyclable ferrite-nickel magnetic nanoparticles (Fe(3)O(4)-Ni) by using glycerol as hydrogen source allows aromatic amines and alcohols to be synthesized from the precursor nitroarenes and carbonyl compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA