Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822872

RESUMO

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cobre/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
2.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475447

RESUMO

The efficacy of using a synthetic (azoxystrobin + difenoconazole), copper-based (copper oxychloride) and low-content copper compound (copper complexed with gluconate and lignosulphonate) fungicides for controlling Venturia oleaginea, the causal agent of olive spot disease, was evaluated in an olive (cv. Nabali) orchard located in the Kafr Qud area (Palestine) in 2017-2018. Treatments were applied at three different times (February, April, and August). In January 2017, at the beginning of the experiment, about 90% of the leaves grown in 2016 were infected. Defoliation was determined by counting the leaves on the labeled branches initially and then periodically. It increased gradually in both the control and treated trees, but those treated with azoxystrobin + difenoconazole or with copper complexed with gluconate and lignosulphonate showed a slower defoliation rate. During 2017, new shoots grew and new leaves developed. All treatments reduced the drop of new leaves with respect to the control, with positive effects on the reproductive activity (inflorescence growth and yield). Overall, all treatments significantly reduced the disease, thus indicating the possibility of greatly reducing infections if treatments are regularly applied each year, also with traditional (copper-based) fungicides. Due to their capability of penetrating inside the vegetative tissue, azoxystrobin + difenoconazole or copper complexed with gluconate and lignosulphonate reduced/slowed down the drop of infected leaves. The use of these fungicides is therefore particularly recommended when olive leaf spot disease is severe. The use of low-content copper compounds allows the amount of metallic copper used for the treatments against V. oleaginea to be greatly reduced.

3.
Front Plant Sci ; 15: 1369048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516668

RESUMO

A trial was carried out in central Italy in an olive orchard of cultivar Moraiolo, highly infected by Venturia oleaginea. The aim of the investigation was to evaluate the effects of autumn and spring applications of copper oxychloride or dodine to control the disease. Non treated trees were used as the control. The effects of the fungal attacks on leaves and inflorescence development confirmed the high susceptibility of the cultivar Moraiolo to the disease. The results show that in trees heavily infected, but with most of the infected leaves at the early stage of the disease (asymptomatic phase), treatments with dodine had a curative effect, with consequent reduction in the appearance of symptomatic leaves and defoliation with respect to the control or copper-treated trees. The use of dodine against the autumnal attacks of V. oleaginea allowed most of the old leaves to be maintained until the new ones had formed, which is important for the growth processes during the early part of the growing season. Overall, the results indicate that to efficiently control the pathogen using copper compounds, treatments must start soon after the beginning of the attack and be repeated in order to maintain the infection at a low level. Dodine can be efficiently used if there is a great increase in infected leaves. The use of dodine to solve particular situations and not for normal repeated use is regulated by the fact that in some countries, Italy included, protocols for integrated pest management allow only one dodine treatment/year.

5.
Front Plant Sci ; 14: 1197706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476164

RESUMO

Pseudomonas syringae pv. tomato is the causal agent of bacterial speck of tomato, an important disease that results in severe crop production losses worldwide. Currently, two races within phylogroup 01a (PG01a) are described for this pathogen. Race 0 strains have avirulence genes for the expression of type III system-associated effectors AvrPto1 and AvrPtoB, that are recognized and targeted by the effector-triggered immunity in tomato cultivars having the pto race-specific resistance gene. Race 1 strains instead lack the avrPto1 and avrPtoB genes and are therefore capable to aggressively attack all tomato cultivars. Here, we have performed the complete genome sequencing and the analysis of P. syringae pv. tomato strain DAPP-PG 215, which was described as a race 0 strain in 1996. Our analysis revealed that its genome comprises a 6.2 Mb circular chromosome and two plasmids (107 kb and 81 kb). The results indicate that the strain is phylogenetically closely related to strains Max13, K40, T1 and NYS-T1, all known race 1 strains. The chromosome of DAPP-PG 215 encodes race 1-associated genes like avrA and hopW1 and lacks race 0-associated genes like hopN1, giving it a race 1 genetic background. However, the genome harbors a complete ortholog of avrPto1, which allows the strain to display a race 0 phenotype. Comparative genomics with several PG01a genomes revealed that mobile DNA elements are rather involved in the evolution of the two different races.

6.
Appl Microbiol Biotechnol ; 107(14): 4519-4531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37289240

RESUMO

The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM­SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM­SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM­SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM­SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM­SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM­SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. KEY POINTS: • ARGIRIUM­SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM­SUNC inhibits biofilm formation at low doses; • ARGIRIUM­SUNC protects tomato plants against bacterial speck disease.


Assuntos
Cobre , Prata , Humanos , Prata/farmacologia , Cobre/farmacologia , Clavibacter , Estresse Oxidativo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
7.
BMC Genomics ; 23(1): 742, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344949

RESUMO

Pantoea agglomerans DAPP-PG 734 was isolated as endophyte from knots (tumors) caused by Pseudomonas savastanoi pv. savastanoi DAPP-PG 722 in olive trees. To understand the plant pathogen-endophyte interaction on a genomic level, the whole genome of P. agglomerans DAPP-PG 734 was sequenced and annotated. The complete genome had a total size of 5'396'424 bp, containing one circular chromosome and four large circular plasmids. The aim of this study was to identify genomic features that could play a potential role in the interaction between P. agglomerans DAPP-PG 734 and P. savastanoi pv. savastanoi DAPP-PG 722. For this purpose, a comparative genomic analysis between the genome of P. agglomerans DAPP-PG 734 and those of related Pantoea spp. was carried out. In P. agglomerans DAPP-PG 734, gene clusters for the synthesis of the Hrp-1 type III secretion system (T3SS), type VI secretion systems (T6SS) and autoinducer, which could play an important role in a plant-pathogenic community enhancing knot formation in olive trees, were identified. Additional gene clusters for the biosynthesis of two different antibiotics, namely dapdiamide E and antibiotic B025670, which were found in regions between integrative conjugative elements (ICE), were observed. The in-depth analysis of the whole genome suggested a characterization of the P. agglomerans DAPP-PG 734 isolate as endophytic bacterium with biocontrol activity rather than as a plant pathogen.


Assuntos
Olea , Pantoea , Pantoea/genética , Doenças das Plantas/microbiologia , Olea/genética , Olea/microbiologia , Endófitos/genética , Genômica
8.
Front Plant Sci ; 13: 1061136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699830

RESUMO

Olive leaf spot (OLS) caused by Venturia oleaginea is widespread in all olive-growing areas and continents, where can cause severe yield losses. The disease is often underestimated for the difficulty to reveal early leaf symptoms and for the pathogen-induced phylloptosis, which creates the illusion of healthy and restored plants. The present review provide updated information on taxonomy, pathogen life style and cycle, epidemiology, diagnosis, and control. Application of copper-based fungicides is the main method to control OLS. However, the regulation 2009/1107 of the European Commission include these fungicides in the list of substances candidates for substitution. It is therefore urgent to find alternative control strategies especially for organic agriculture. Among new approaches/strategies for controlling OLS, promising results have been obtained using nanotechnology, endophytic microbes, and biostimulants.

9.
Mol Plant Pathol ; 22(10): 1209-1225, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34268839

RESUMO

The endophytic bacterium Pantoea agglomerans DAPP-PG 734 was previously isolated from olive knots caused by infection with Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. Whole-genome analysis of this P. agglomerans strain revealed the presence of a Hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To assess the role of the P. agglomerans T3SS in the interaction with P. savastanoi pv. savastanoi, we generated independent knockout mutants in three Hrp genes of the P. agglomerans DAPP-PG 734 T3SS (hrpJ, hrpN, and hrpY). In contrast to the wildtype control, all three mutants failed to cause a hypersensitive response when infiltrated in tobacco leaves, suggesting that P. agglomerans T3SS is functional and injects effector proteins in plant cells. In contrast to P. savastanoi pv. savastanoi DAPP-PG 722, the wildtype strain P. agglomerans DAPP-PG 734 and its Hrp T3SS mutants did not cause olive knot disease in 1-year-old olive plants. Coinoculation of P. savastanoi pv. savastanoi with P. agglomerans wildtype strains did not significantly change the knot size, while the DAPP-PG 734 hrpY mutant induced a significant decrease in knot size, which could be complemented by providing hrpY on a plasmid. By epifluorescence microscopy and confocal laser scanning microscopy, we found that the localization patterns in knots were nonoverlapping for P. savastanoi pv. savastanoi and P. agglomerans when coinoculated. Our results suggest that suppression of olive plant defences mediated by the Hrp T3SS of P. agglomerans DAPP-PG 734 positively impacts the virulence of P. savastanoi pv. savastanoi DAPP-PG 722.


Assuntos
Olea , Pantoea , Pantoea/genética , Piperazinas , Doenças das Plantas , Pseudomonas , Sistemas de Secreção Tipo III/genética , Virulência/genética
10.
Bio Protoc ; 11(6): e3949, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855111

RESUMO

Calcium signaling is an emerging mechanism by which bacteria respond to environmental cues. To measure the intracellular free-calcium concentration in bacterial cells, [Ca2+]i, a simple spectrofluorometric method based on the chemical probe Fura 2-acetoxy methyl ester (Fura 2-AM) is here presented using Pseudomonad bacterial cells. This is an alternative and quantitative method that can be completed in a short period of time with low costs, and it does not require the induction of heterologously expressed protein-based probes like Aequorin. Furthermore, it is possible to verify the properties of membrane channels involved in Ca2+ entry from the extracellular matrix. This method is in particular valuable for measuring [Ca2+]i in the range of 0.1-39.8 µM in small cells like those of prokaryotes.

11.
Mol Plant Pathol ; 20(5): 716-730, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912619

RESUMO

In a number of compatible plant-bacterium interactions, a rise in apoplastic Ca2+ levels is observed, suggesting that Ca2+ represents an important environmental clue, as reported for bacteria infecting mammalians. We demonstrate that Ca2+ entry in Pseudomonas savastanoi pv. savastanoi (Psav) strain DAPP-PG 722 is mediated by a Na+ /Ca2+ exchanger critical for virulence. Using the fluorescent Ca2+ probe Fura 2-AM, we demonstrate that Ca2+ enters Psav cells foremost when they experience low levels of energy, a situation mimicking the apoplastic fluid. In fact, Ca2+ entry was suppressed in the presence of high concentrations of glucose, fructose, sucrose or adenosine triphosphate (ATP). Since Ca2+ entry was inhibited by nifedipine and LiCl, we conclude that the channel for Ca2+ entry is a Na+ /Ca2+ exchanger. In silico analysis of the Psav DAPP-PG 722 genome revealed the presence of a single gene coding for a Na+ /Ca2+ exchanger (cneA), which is a widely conserved and ancestral gene within the P. syringae complex based on gene phylogeny. Mutation of cneA compromised not only Ca2+ entry, but also compromised the Hypersensitive response (HR) in tobacco leaves and blocked the ability to induce knots in olive stems. The expression of both pathogenicity (hrpL, hrpA and iaaM) and virulence (ptz) genes was reduced in this Psav-cneA mutant. Complementation of the Psav-cneA mutation restored both Ca2+ entry and pathogenicity in olive plants, but failed to restore the HR in tobacco leaves. In conclusion, Ca2+ entry acts as a 'host signal' that allows and promotes Psav pathogenicity on olive plants.


Assuntos
Proteínas de Bactérias/metabolismo , Olea/microbiologia , Pseudomonas/patogenicidade , Trocador de Sódio e Cálcio/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cálcio/metabolismo , Cromossomos Bacterianos/genética , Citosol/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Mutação/genética , Olea/efeitos dos fármacos , Fenótipo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas/efeitos dos fármacos , Nicotiana/microbiologia , Virulência/efeitos dos fármacos
12.
Sci Rep ; 8(1): 2594, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416074

RESUMO

Despite the fact that natural enemies can synergistically contribute to herbivore pest suppression, sometimes predators engage in intraguild predation (IGP) that might dampen trophic cascades. DNA-based gut-content analysis has become common in assessing trophic connections and biocontrol potential by predators in field systems. Here, we developed a molecular technique that can be used to unravel predation among two ladybirds, Coccinella septempunctata and Hippodamia variegata, and their shared prey, Aphis gossypii. Both ladybirds may provide effective control of the pest. Therefore, understanding their likelihood to engage in IGP is crucial for conservation biological control. Ladybird specimens were collected in melon crop. DNA extraction, primer design and evaluation were conducted. Detectability of prey DNA did not differ significantly between the two ladybirds. H. variegata exhibited higher predation on A. gossypii than C. septempunctata (90.6% vs. 70.9%) and data correction based on DNA detectability confirmed this ranking. IGP was similar among the two species, although corrected data might suggest a stronger predation by C. septempunctata. Intriguingly, IGP by C. septempunctata was lower than predicted by laboratory bioassays, possibly due to the high complexity that arises under field conditions. Implications of our results for biological control and perspectives for ecological network analysis are discussed.


Assuntos
Afídeos/genética , Besouros/genética , DNA/genética , Larva/genética , Controle Biológico de Vetores , Animais , Carnivoridade , Dinâmica Populacional , Comportamento Predatório , Especificidade da Espécie
13.
Plant Physiol Biochem ; 112: 9-18, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012288

RESUMO

Peach leaf curl is a disease that affects the leaves of peach trees, and in severe cases all of the leaf can be similarly affected. This study investigated some effects of this disease on the metabolism of peach leaves in which all parts of the leaf were infected. These diseased leaves contained very little chlorophyll and performed little or no photosynthesis. Compared to uninfected leaves, diseased leaves possessed higher contents of fructose and especially glucose, but lowered contents of sucrose, sorbitol and especially starch. The activities of soluble acid invertase, neutral invertase, sorbitol dehydrogenase and sucrose synthase were all higher in diseased leaves, whereas, those of aldose-6-phosphate reductase and sucrose phosphate synthase were lower. The activities of hexokinase and fructokinase were little changed. In addition, immunblots showed that the contents of Rubisco and ADP-glucose phosphorylase were reduced in diseased leaves, whereas, the content of phosphoenolpyruvate carboxylase was increased. The results show that certain aspects of the metabolism of diseased leaves are similar to immature sink leaves. That is photosynthetic function is reduced, the leaf imports rather than exports sugars, and the contents of non-structural carbohydrates and enzymes involved in their metabolism are similar to sink leaves. Further, the effects of peach leaf curl on the metabolism of peach leaves are comparable to the effects of some other diseases on the metabolism of photosynthetic organs of other plant species.


Assuntos
Metabolismo dos Carboidratos , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Prunus persica/metabolismo , Prunus persica/microbiologia , Carboidratos/análise , Fotossíntese , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Prunus persica/enzimologia
14.
Front Plant Sci ; 6: 434, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113855

RESUMO

There is an increasing interest in studying interspecies bacterial interactions in diseases of animals and plants as it is believed that the great majority of bacteria found in nature live in complex communities. Plant pathologists have thus far mainly focused on studies involving single species or on their interactions with antagonistic competitors. A bacterial disease used as model to study multispecies interactions is the olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi (Psv). Knots caused by Psv in branches and other aerial parts of the olive trees are an ideal niche not only for the pathogen but also for many other plant-associated bacterial species, mainly belonging to the genera Pantoea, Pectobacterium, Erwinia, and Curtobacterium. The non-pathogenic bacterial species Erwinia toletana, Pantoea agglomerans, and Erwinia oleae, which are frequently isolated inside the olive knots, cooperate with Psv in modulating the disease severity. Co-inoculations of these species with Psv result in bigger knots and better bacterial colonization when compared to single inoculations. Moreover, harmless bacteria co-localize with the pathogen inside the knots, indicating the formation of stable bacterial consortia that may facilitate the exchange of quorum sensing signals and metabolites. Here we discuss the possible role of bacterial communities in the establishment and development of olive knot disease, which we believe could be taking place in many other bacterial plant diseases.

15.
Genome Announc ; 2(6)2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25502684

RESUMO

Erwinia oleae is a nonpathogenic bacterial species isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. Since the presence of E. oleae in the knots increases disease severity, interspecies interactions with the pathogen are hypothesized. Here, we report the first draft genome sequence of the E. oleae type strain.

16.
Genome Announc ; 2(5)2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25278521

RESUMO

Olive knot disease, caused by the bacterium Pseudomonas savastanoi pv. savastanoi, seriously affects olive trees in the Mediterranean basin. Here, we report the draft genome sequence of P. savastanoi pv. savastanoi DAPP-PG 722, a strain isolated in Italy from an olive plant affected by knot disease.

17.
Genome Announc ; 2(4)2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25103763

RESUMO

Pantoea agglomerans strains inducing a hypersensitive reaction in tobacco leaves are frequently isolated inside olive knots caused by Pseudomonas savastanoi pv. savastanoi. Here, we report the draft genome sequence of the Italian P. agglomerans strain, which is able to increase olive knot disease severity when coinoculated with P. savastanoi pv. savastanoi.

18.
Microbiology (Reading) ; 160(Pt 3): 556-566, 2014 03.
Artigo em Inglês | MEDLINE | ID: mdl-24421406

RESUMO

Although the great majority of bacteria found in nature live in multispecies communities, microbiological studies have focused historically on single species or competition and antagonism experiments between different species. Future directions need to focus much more on microbial communities in order to better understand what is happening in the wild. We are using olive knot disease as a model to study the role and interaction of multispecies bacterial communities in disease establishment/development. In the olive knot, non-pathogenic bacterial species (e.g. Erwinia toletana) co-exist with the pathogen (Pseudomonas savastanoi pv. savastanoi); we have demonstrated cooperation among these two species via quorum sensing (QS) signal sharing. The outcome of this interaction is a more aggressive disease when co-inoculations are made compared with single inoculations. In planta experiments show that these two species co-localize in the olive knot, and this close proximity most probably facilitates exchange of QS signals and metabolites. In silico recreation of their metabolic pathways showed that they could have complementing pathways also implicating sharing of metabolites. Our microbiome studies of nine olive knot samples have shown that the olive knot community possesses great bacterial diversity; however. the presence of five genera (i.e. Pseudomonas, Pantoea, Curtobacterium, Pectobacterium and Erwinia) can be found in almost all samples.


Assuntos
Bactérias/classificação , Infecções Bacterianas/microbiologia , Microbiota , Doenças das Plantas/microbiologia , Bactérias/genética , Bactérias/metabolismo , Redes e Vias Metabólicas , Metagenoma , Olea/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo
19.
Genome Announc ; 1(3)2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23661482

RESUMO

Erwinia toletana was first reported in 2004 as a bacterial species isolated from olive knots caused by the plant bacterium Pseudomonas savastanoi pv. savastanoi. Recent studies have shown that the presence of this bacterium in the olive knot environment increases the virulence of the disease, indicating possible interspecies interactions with P. savastanoi pv. savastanoi. Here, we report the first draft genome sequence of an E. toletana strain.

20.
J Plant Physiol ; 168(15): 1784-94, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21742407

RESUMO

In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O(3)). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O(3) and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O(3) sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H(2)O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Quinases/genética , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Mutagênese Insercional , Ozônio/farmacologia , Fenótipo , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA