Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39001169

RESUMO

Inexpensive chemiresistive sensors are often insufficiently selective as they are sensitive to multiple components of the gas mixture at the same time. One solution would be to insert a device in front of the sensor that separates the measured gas mixture and possibly isolates the unwanted components. This study focused on the fabrication and characterization of a compact unit, which was fabricated by 3D printing, for the separation and detection of simple gas mixtures. The capillary, the basic part of the compact unit, was 4.689 m long and had a diameter of 0.7 mm. The compact unit also contained a mixing chamber on the inlet side and a measuring chamber with a MiCS-6814 sensor on the outlet side. Mixtures of ethanol and water at different concentrations were chosen for characterization. The measured calibration curve was found to have a reliability of R2 = 0.9941. The study further addressed the elements of environmental friendliness of the materials used and their sustainability.

2.
Sensors (Basel) ; 24(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257447

RESUMO

This study focuses on an applicability of the device designed for monitoring dough fermentation. The device combines a complex system of thermodynamic sensors (TDSs) with an electronic nose (E-nose). The device's behavior was tested in experiments with dough samples. The configuration of the sensors in the thermodynamic system was explored and their response to various positions of the heat source was investigated. When the distance of the heat source and its intensity from two thermodynamic sensors changes, the output signal of the thermodynamic system changes as well. Thus, as the distance of the heat source decreases or the intensity increases, there is a higher change in the output signal of the system. The linear trend of this change reaches an R2 value of 0.936. Characteristics of the doughs prepared from traditional and non-traditional flours were successfully detected using the electronic nose. To validate findings, the results of the measurements were compared with signals from the rheofermentometer Rheo F4, and the correlation between the output signals was closely monitored. The data after statistical evaluation show that the measurements using thermodynamic sensors and electronic nose directly correlate the most with the measured values of the fermenting dough volume. Pearson's correlation coefficient for TDSs and rheofermentometer reaches up to 0.932. The E-nose signals also correlate well with dough volume development, up to 0.973. The data and their analysis provided by this study declare that the used system configuration and methods are fully usable for this type of food analysis and also could be usable in other types of food based on the controlled fermentation. The system configuration, based on the result, will be also used in future studies.

3.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617133

RESUMO

Dough fermentation in gluten-free bakery products is problematic due to the absence of gluten, which provides advantageous rheological properties. A thermodynamic sensor (TDS) system combined with an electronic nose was tested as an alternative to conventional methods monitoring dough development based on mechanical properties. In the first part, the configuration of the sensors in the thermodynamic system and their response to different heat-source positions, which significantly affect the output signal from the measurement system, were investigated. The practical contribution lies in the application of the measurements to the example of gluten-free doughs with and without edible insect enrichment. An optimized configuration of the thermodynamic system (one sensor on the inner wall of the container at the bottom and another in the middle of the container closer to the top of the dough) in combination with an experimental electronic nose was used for the aforementioned measurement. In some cases, up to 87% correlation between the signal from the TDS and the signals from a professional rheofermentometer Rheo F-4 (Chopin) was demonstrated. The differences between the results can be explained by the use of different techniques. Using a combination of sensor systems in one place, one time and one sample can lead to more comprehensive and robust results. Furthermore, it was shown that the fermentation activity increased in corn dough with the addition of insects compared to dough without the addition. In rice flour dough with the addition of edible insects, fermentation activity was similar to that of the flour without the addition.


Assuntos
Dieta Livre de Glúten , Farinha , Fermentação , Termodinâmica , Reologia
4.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271145

RESUMO

This study focuses on the use of thermodynamic sensors (TDS) in baking, brewing, and yogurt production at home. Using thermodynamic sensors, a change in the temperature flow between the two sensor elements during fermentation was observed for the final mixture (complete recipe for pizza dough production), showing the possibility of distinguishing some phases of the fermentation process. Even during the fermentation process in the preparation of wort and yogurt with non-traditional additives, the sensors were able to indicate significant parts of the process, including the end of the process. The research article also mentions as a new idea the use of trivial regulation at home in food production to determine the course of the fermentation process. The results presented in this article show the possibility of using TDS for more accurate characterization and adjustment of the production process of selected foods in the basic phase, which will be further applicable in the food industry, with the potential to reduce the cost of food production processes that involve a fermentation process.


Assuntos
Manipulação de Alimentos , Iogurte , Fermentação , Temperatura , Termodinâmica
5.
Sensors (Basel) ; 20(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599780

RESUMO

The present article dealt with the fortification of plain wheat flour by the addition of grape pomace flour and mealworm larvae powder, focusing on the mineral content and selected properties of the dough. The work also analyzed the properties of one mixture in a weight combination of 80% wheat flour, 10% grape pomace, and 10% mealworm. X-ray analysis was used to measure the mineral content of calcium, iron, copper, and zinc. The properties of the individual mixture were monitored using an experimental electronic nose and a thermodynamic sensor system during the leavening. The results showed that a combination of 50% grape pomace and 50% mealworm larvae was advantageous from the viewpoint of the favorable representation of minerals. The analyzed mixture contained a high proportion of calcium (3976.7 ± 362.9 mg·kg-1), iron (209.3 ± 25.7 mg·kg-1), and copper (65.0 ± 100.1 mg·kg-1) for grape pomace as well as a high proportion of zinc (277.0 ± 21.9 mg·kg-1) for the mealworm larvae. However, this mixture showed a small change in the heat flux response when analyzed with thermodynamic sensors (lower yeast activity and worse gas formation properties resulted from the sensor characteristic with a lower response). The 100% wheat flour had the highest response, and the second highest response was recorded for a mixture of wheat flour with 10% grape pomace and 10% mealworm larvae. This combination also often had one of the highest responses when measured with an experimental electronic nose, so this combination was considered as one of the most advantageous options for processing from the mixtures mentioned in the article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA