Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(7): 991-1003, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312287

RESUMO

The enhanced interest in quantum-related phenomena has provided new opportunities for chemists to push the limits of detection and analysis of chemical processes. As some have called this the second quantum revolution, a time has come to apply the rules learned from previous research in quantum phenomena toward new methods and technologies important to chemists. While there has been great interest recently in quantum information science (QIS), the quest to understand how nonclassical states of light interact with matter has been ongoing for more than two decades. Our entry into this field started around this time with the use of materials to produce nonclassical states of light. Here, the process of multiphoton absorption led to photon-number squeezed states of light, where the photon statistics are sub-Poissonian. In addition to the great interest in generating squeezed states of light, there was also interest in the formation of entangled states of light. While much of the effort is still in foundational physics, there are numerous new avenues as to how quantum entanglement can be applied to spectroscopy, imaging, and sensing. These opportunities could have a large impact on the chemical community for a broad spectrum of applications.In this Account, we discuss the use of entangled (or quantum) light for spectroscopy as well as applications in microscopy and interferometry. The potential benefits of the use of quantum light are discussed in detail. From the first experiments in porphyrin dendrimer systems by Dr. Dong-Ik Lee in our group to the measurements of the entangled two photon absorption cross sections of biological systems such as flavoproteins, the usefulness of entangled light for spectroscopy has been illustrated. These early measurements led the way to more advanced measurements of the unique characteristics of both entangled light and the entangled photon absorption cross-section, which provides new control knobs for manipulating excited states in molecules.The first reports of fluorescence-induced entangled processes were in organic chromophores where the entangled photon cross-section was measured. These results would later have widespread impact in applications such as entangled two-photon microscopy. From our design, construction and implementation of a quantum entangled photon excited microscope, important imaging capabilities were achieved at an unprecedented low excitation intensity of 107 photons/s, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. New reports have also illustrated an advantage of nonclassical light in Raman imaging as well.From a standpoint of more precise measurements, the use of entangled photons in quantum interferometry may offer new opportunities for chemistry research. Experiments that combine molecular spectroscopy and quantum interferometry, by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer, have been carried out. The initial experiment showed that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer. In addition, parameters such as the dephasing time have been obtained with the opportunity for even more advanced phenomenology in the future.


Assuntos
Fótons , Análise Espectral
2.
J Am Chem Soc ; 143(41): 16930-16934, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613733

RESUMO

Entangled two-photon absorption (ETPA) is known to create photoinduced transitions with extremely low light intensity, reducing the risk of phototoxicity compared to classical two-photon absorption. Previous works have predicted the ETPA cross-section, σe, to vary inversely with the product of entanglement time (Te) and entanglement area (Ae), i.e., σe ∼ 1/AeTe. The decreasing σe with increasing Te has limited ETPA to fs-scale Te, while ETPA applications for ps-scale spectroscopy have been unexplored. However, we show that spectral-spatial coupling, which reduces Ae as the SPDC bandwidth (σf) decreases, plays a significant role in determining σe when Te > ∼100 fs. We experimentally measured σe for zinc tetraphenylporphyrin at several σf values. For type-I ETPA, σe increases as σf decreases down to 0.1 ps-1. For type-II SPDC, σe is constant for a wide range of σf. With a theoretical analysis of the data, the maximum type-I σe would occur at σf = 0.1 ps-1 (Te = 10 ps). At this maximum, σe is 1 order of magnitude larger than fs-scale σe and 3 orders of magnitude larger than previous predictions of ps-scale σe. By utilizing this spectral-spatial coupling, narrowband type-I ETPA provides a new opportunity to increase the efficiency of measuring nonlinear optical signals and to control photochemical reactions requiring ps temporal precision.

4.
J Am Chem Soc ; 142(23): 10446-10458, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401020

RESUMO

The use of a nonclassical light source for studying molecular electronic structure has been of great interest in many applications. Here we report a theoretical study of entangled two-photon absorption (ETPA) in organic chromophores, and we provide new insight into the quantitative relation between ETPA and the corresponding unentangled TPA based on the significantly different line widths associated with entangled and unentangled processes. A sum-over-states approach is used to obtain classical TPA and ETPA cross sections and to explore the contribution of each electronic state to the ETPA process. The transition moments and energies needed for this calculation were obtained from a second linear-response (SLR) TDDFT method [J. Chem. Phys., 2016, 144, 204105], which enables the treatment of relatively large polythiophene dendrimers that serve as two-photon absorbers. In addition, the SLR calculations provide estimates of the excited state radiative line width, which we relate to the entangled two-photon density of states using a quantum electrodynamic analysis. This analysis shows that for the dendrimers being studied, the line width for ETPA is orders of magnitude narrower than for TPA, corresponding to highly entangled photons with a large Schmidt number. The calculated cross sections are in good agreement with the experimentally reported values. We also carried out a state-resolved analysis to unveil pathways for the ETPA process, and these demonstrate significant interference behavior. We emphasize that the use of entangled photons in TPA process plays a critical role in probing the detailed electronic structure of a molecule by probing light-matter interference nature in the quantum limit.

5.
Chem Sci ; 10(35): 8143-8153, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31857881

RESUMO

Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes. We find that the Q-band of Bchl a is comprised of two independent bands, that are assigned following the Gouterman model to Q x and Q y states with orthogonal transition dipole moments. However, we measure the angle to be ∼75°, a finding that is confirmed by ab initio calculations. The internal conversion rate constant from Q x to Q y is found to be 11 ps-1. Unlike Bchl a, the Q-band of Chl a contains three distinct peaks with different polarizations. Ab initio calculations trace these features back to a spectral overlap between two electronic transitions and their vibrational replicas. The smaller energy gap and the mixing of vibronic states result in faster internal conversion rate constants of 38-50 ps-1. We analyze the spectra of penta-coordinated Bchl a and Chl a to highlight the interplay between low-lying vibronic states and their relationship to photoinduced relaxation. Our findings shed new light on the photoexcited dynamics in photosynthetic systems where these chromophores are primary pigments.

6.
Sci Rep ; 9(1): 11351, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383882

RESUMO

Despite decades of research, the mechanism of anesthetic-induced unconsciousness remains incompletely understood, with some advocating for a quantum mechanical basis. Despite associations between general anesthesia and changes in physical properties such as electron spin, there has been no empirical demonstration that general anesthetics are capable of functional quantum interactions. In this work, we studied the linear and non-linear optical properties of the halogenated ethers sevoflurane (SEVO) and isoflurane (ISO), using UV-Vis spectroscopy, time dependent-density functional theory (TD-DFT) calculations, classical two-photon spectroscopy, and entangled two-photon spectroscopy. We show that both of these halogenated ethers interact with pairs of 800 nm entangled photons while neither interact with 800 nm classical photons. By contrast, nonhalogenated diethyl ether does not interact with entangled photons. This is the first experimental evidence that halogenated anesthetics can directly undergo quantum interaction mechanisms, offering a new approach to understanding their physicochemical properties.

7.
J Phys Chem A ; 122(41): 8198-8212, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30223648

RESUMO

The use of nonclassical states of light to probe organic molecules has received great attention due to the possibility of providing new and detailed information regarding molecular excitations. Experimental and theoretical results have been reported which show large enhancements of the nonlinear optical responses in organic materials due to possible virtual-electronic-state interactions with entangled photons. In order to predict molecular excitations with nonclassical light, more detailed investigations of the parameters involved must be carried out. In this report we investigate the details of the state-to-state parameters important in calculating the contribution of particular transitions involved in the entangled two-photon absorption process for diatomic molecules. The theoretical discussion of the entangled two-photon process is described for a set of diatomic molecules. Specifically, we provide detailed quantum chemical calculations which give accurate energies and transition moments for selection-rule allowed intermediate states important in the entangled nonlinear effect for the diatomic molecules. These results are used to estimate in a more accurate manner the nonmonotonic behavior of the entangled two-photon absorption cross-section. We also derive accurate approximations that can be used to predict the period between entanglement-induced transparencies without needing exact values of the transition dipole moments. These results suggest that with the additional parameters allotted by the entangled two-photon absorption (in comparison to the classical case), it may be possible to predict and later control the nonlinear absorption and transparency of a molecule at a constant incident photon frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA