RESUMO
We describe the design of lubricating and wear protecting fluids based on mixtures of bottle-brushes (BB) and linear polymer solutions. To illustrate this concept, we used hyaluronic acid (HA), a naturally occurring linear polyelectrolyte, and a water-soluble synthetic BB polymer. Individually, these two polymers exhibit poor wear protecting capabilities compared to that of saline solutions. Mixture of the two polymers in pure water or in saline allows the wear protection of surfaces over a wide range of shearing conditions to drastically increase. We demonstrate that this synergy between the BB and HA polymers emerges from a strong cohesion between the two components forming the boundary film due to entanglements between both polymers. We show that this concept can be applied to other types of linear polymers and surfaces and is independent of the chemical and mechanical properties of the surfaces.
RESUMO
Polymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa conforming to biological applications, yet those gel properties require a solvent fraction. The presence of a solvent can lead to phase separation, evaporation and leakage on deformation, diminishing gel elasticity and eliciting inflammatory responses in any surrounding tissues. Here, we report solvent-free, supersoft and superelastic polymer melts and networks prepared from bottlebrush macromolecules. The brush-like architecture expands the diameter of the polymer chains, diluting their entanglements without markedly increasing stiffness. This adjustable interplay between chain diameter and stiffness makes it possible to tailor the network's elastic modulus and extensibility without the complications associated with a swollen gel. The bottlebrush melts and elastomers exhibit an unprecedented combination of low modulus (â¼100 Pa), high strain at break (â¼1,000%), and extraordinary elasticity, properties that are on par with those of designer gels.
RESUMO
Unique star-like polymeric architectures composed of bottlebrush arms and a molecular spoked wheel (MSW) core were prepared by atom transfer radical polymerization (ATRP). A hexahydroxy-functionalized MSW (MSW(6-OH)) was synthesized and converted into a six-fold ATRP initiator (MSW(6-Br)). Linear chain arms were grafted from MSW(6-Br) and subsequently functionalized with ATRP moieties to form six-arm macroinitiators. Grafting of side chains from the macroinitiators yielded four different star-shaped bottlebrushes with varying lengths of arms and side chains, i.e., (450-g-20)6, (450-g-40)6, (300-g-60)6, and (300-g-150)6. Gel permeation chromatography analysis and molecular imaging by atomic force microscopy confirmed the formation of well-defined macromolecules with narrow molecular weight distributions. Upon adsorption to an aqueous substrate, the bottlebrush arms underwent prompt dissociation from the MSW core, followed by scission of covalent bonds in the bottlebrush backbones. The preferential cleavage of the arms is attributed to strong steric repulsion between bottlebrushes at the MSW branching center. Star-shaped macroinitiators may undergo aggregation which can be prevented by sonication.
RESUMO
We report the design of a bottle-brush polymer whose architecture closely mimics the lubricating protein lubricin. Interaction forces, assessed using a Surface Forces Apparatus (SFA), between two mica surfaces fully covered by the polymer demonstrate that the polymer adopts a loop conformation giving rise to a weak and long-range repulsive interaction force between the surfaces. Under high compression, stronger repulsive forces appear due to the strong compression of the grafted pendant chains of the polymer. When submitted to shear, the system shows extremely low frictional forces dependent on the salinity of the medium. Friction coefficients measured for this system were as low as ~10(-3). Interestingly, the confined lubricating fluid obeys all three Amontons' laws. We explain this peculiar observation by the strong shear thinning of the confined fluid and the osmotic repulsive forces that dominate the overall (dynamic and equilibrium) surface interactions.
Assuntos
Glicoproteínas/química , Lubrificantes/química , Polímeros/química , Silicatos de Alumínio/química , Fricção , Propriedades de SuperfícieRESUMO
Bottlebrush macromolecules can be regarded as molecular tensile machines, where tension is self-generated along the backbone due to steric repulsion between densely grafted side chains. This intrinsic tension is amplified upon adsorption of bottlebrush molecules onto a substrate and increases with grafting density, side chain length, and strength of adhesion to the substrate. To investigate the effects of tension on the electronic structure of polythiophene (PT), bottlebrush macromolecules were prepared by grafting poly(n-butyl acrylate) (PBA) side chains from PT macroinitiators by atom transfer radical polymerization (ATRP). The fluorescence spectra of submonolayers of PT bottlebrushes were measured on a Langmuir-Blodgett (LB) trough with the backbone tension adjusted by controlling the side-chain length, surface pressure, and chemical composition of a substrate. The wavelength of maximum emission has initially red-shifted, followed by a blue-shift as the backbone tension increases from 0 to 2.5 nN, which agrees with DFT calculations. The red-shift is ascribed to an increase in the conjugation length due to the extension of the PT backbone at lower force regime (0-1.0 nN), while the blue-shift is attributed to deformations of bond lengths and angles in the backbone at higher force regime (1.0-2.5 nN).
RESUMO
A new polyhedral oligomeric silsesquioxane (POSS) methacrylate monomer, 1-(3-(methacryloyloxy)propyl)dimethylsiloxy-3,5,7,9,11,13,15-hepta(isobutyl)pentacyclo-[9.5.1.13,9.15,15.17,13]octasiloxane ((i-Bu)7POSS-OSiMe2-MA, 1), with a flexible spacer between the cubic POSS cage and methacrylate group was synthesized to reduce steric strain and thus achieve polymethacrylates (poly(POSS-MA)s) with high molecular weight (MW). Atom transfer radical polymerization (ATRP) of 1 at high monomer concentration (1 M, corresponding to ca. 85 wt % of 1) led to polymers with the absolute number-average MW, determined by multiangle laser light scattering, Mn,MALLS = 2 350 000 (and apparent MW, measured by gel permeation chromatography with linear poly(methyl methacrylate) (PMMA) standards, Mn,GPC = 550 000). Optimization of the reaction conditions, including the ATRP catalyst, targeted degrees of polymerization, monomer concentrations, as well as a monomer feeding, resulting in the first well-defined high MW polymers with POSS moieties.
RESUMO
We here report the synthesis and characterization of a complex polymeric architecture based on a block copolymer with a cylindrical brush block and a single-chain polymeric nanoparticle block folded due to strong intramolecular hydrogen-bonds. The self-assembly of these constructs on mica surfaces was studied with atomic force microscopy, corroborating the distinct presence of block copolymer architectures.
RESUMO
The design and synthesis of a powerful ligand is reported for use in activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) in miniemulsion. The structure of N',Nâ³-dioctadecyl-N',Nâ³-bis[2-(4-methoxy-3,5-dimethyl)pyridylmethyl]ethane-1,2-diamine (DOD-BPED*) was formulated to produce a tetradentate ligand which was both hydrophobic and highly active. Studies in homogeneous ARGET ATRP with CuBr2/DOD-BPED* demonstrated a high degree of control, similar to those ligands traditionally used. CuBr2/DOD-BPED* also proved itself to be extremely useful in ARGET ATRP miniemulsion systems, at concentrations of catalyst as low as 50 ppm while maintaining control over the polymerization of butyl methacrylate (BMA). Additionally, the catalyst was tested over a range of degrees of polymerization, DP = 2000-10 000, all of which resulted in successful polymerizations. Most notably, high molecular weight polymers with Mn,exp > 700 000 and Mw/Mn < 1.4 were prepared with only 50 ppm of CuBr2/DOD-BPED* catalyst under miniemulsion conditions.