Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Pflugers Arch ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570355

RESUMO

Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.

2.
Eur J Clin Microbiol Infect Dis ; 42(12): 1405-1423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897520

RESUMO

In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 ß-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.


Assuntos
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Percepção de Quorum , Farmacorresistência Bacteriana Múltipla/genética
3.
Microorganisms ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375100

RESUMO

Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.

4.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G452-G465, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070751

RESUMO

Mucin O-linked glycans are important mediators of host-microbiota-pathogen interactions in the gastrointestinal tract. The major component of intestinal mucus, the MUC2 mucin, is densely glycosylated, with up to 80% of its weight-to-volume ratio represented by O-linked glycans. Glycosylation of secretory gel-forming mucins has an enormous impact on intestinal barrier function, microbial metabolism, and mucus colonization by both pathogenic and commensal microbes. Mucin O-glycans and glycan-derived sugars may be degraded and used as a nutrient source and may regulate microbial gene expression and virulence. Short-chain fatty acids, produced as a by-product of glycan fermentation, can regulate host immunity and goblet cell activity and are important for host-microbe homeostasis. Mucin glycans may also act as microbial binding sites, influencing intestinal colonization and translocation through the mucus gel barrier. Recent findings indicate that alterations to mucin glycosylation impact the susceptibility of mucins to degradation, resulting in altered barrier function and intestinal permeability. Alterations to mucin glycosylation patterns are frequently observed during intestinal infection and inflammation and have been implicated in microbiota dysbiosis and expansion of pathobionts. Recent work has demonstrated that these alterations can play key roles in disease pathogenesis. The precise mechanisms remain obscure. This review highlights the important roles of O-linked glycans in host-microbe interactions and disease pathogenesis in the context of intestinal infections.


Assuntos
Microbiota , Mucinas , Humanos , Mucinas/metabolismo , Mucosa Intestinal/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Homeostase , Polissacarídeos/química , Mucina-2/metabolismo
5.
J Exp Med ; 220(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688957

RESUMO

Gut microbiota contain communities of viruses, bacteria, fungi, and Eukarya, and live as biofilms. In health, these biofilms adhere to the intestinal mucus surface without contacting the epithelium. Disruptions to the equilibrium between these biofilms and the host may create invasive pathobionts from these commensal communities and contribute to disease pathogenesis. Environmental factors appear to dominate over genetics in determining the shifts in microbiota populations and function, including when comparing microbiota between low-income and industrialized countries. The observations discussed herein carry enormous potential for the development of novel therapies targeting phenotype in microbiota dysbiosis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Biofilmes , Bactérias , Simbiose , Disbiose/microbiologia
6.
JAMA Intern Med ; 183(3): 191-200, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689215

RESUMO

Importance: Infection transmission following endoscopic retrograde cholangiopancreatography (ERCP) can occur due to persistent contamination of duodenoscopes despite high-level disinfection to completely eliminate microorganisms on the instrument. Objective: To determine (1) contamination rates after high-level disinfection and (2) technical performance of duodenoscopes with disposable elevator caps compared with those with standard designs. Design, Setting, and Participants: In this parallel-arm multicenter randomized clinical trial at 2 tertiary ERCP centers in Canada, all patients 18 years and older and undergoing ERCP for any indication were eligible. Intervention: The intervention was use of duodenoscopes with disposable elevator caps compared with duodenoscopes with a standard design. Main Outcomes and Measures: Coprimary outcomes were persistent microbial contamination of the duodenoscope elevator or channel, defined as growth of at least 10 colony-forming units of any organism or any growth of gram-negative bacteria following high-level disinfection (superiority outcome), and technical success of ERCP according to a priori criteria (noninferiority outcome with an a priori noninferiority margin of 7%), assessed by blinded reviewers. Results: From December 2019 to February 2022, 518 patients were enrolled (259 disposable elevator cap duodenoscopes, 259 standard duodenoscopes). Patients had a mean (SD) age of 60.7 (17.0) years and 258 (49.8%) were female. No significant differences were observed between study groups, including in ERCP difficulty. Persistent microbial contamination was detected in 11.2% (24 of 214) of standard duodenoscopes and 3.8% (8 of 208) of disposable elevator cap duodenoscopes (P = .004), corresponding to a relative risk of 0.34 (95% CI, 0.16-0.75) and number needed to treat of 13.6 (95% CI, 8.1-42.7) to avoid persistent contamination. Technical success using the disposable cap scope was noninferior to that of the standard scope (94.6% vs 90.7%, P = .13). There were no differences between study groups in adverse events and other secondary outcomes. Conclusions and Relevance: In this randomized clinical trial, disposable elevator cap duodenoscopes exhibited reduced contamination following high-level disinfection compared with standard scope designs, without affecting the technical performance and safety of ERCP. Trial Registration: ClinicalTrials.gov Identifier: NCT04040504.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Duodenoscópios , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Duodenoscópios/efeitos adversos , Duodenoscópios/microbiologia , Colangiopancreatografia Retrógrada Endoscópica/instrumentação , Elevadores e Escadas Rolantes , Desinfecção , Coleta de Dados
7.
Biofilm ; 4: 100095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478961

RESUMO

Host immune cells and clinical interventions often fail to eradicate biofilm-mediated infections, resulting in chronic inflammation. The role of the biofilm three-dimensional structure in this tolerant phenotype has been studied extensively; however, the impact of small molecules released from biofilm-bacteria in modulating host immune function is less well understood. A model of mixed-species biofilms composed of Fusobacterium necrophorum and Porphyromonas levii was developed to evaluate bovine neutrophil responses to bioactive molecules released from either biofilm or planktonic bacteria. We hypothesized that different soluble extracellular factors (ECFs) would be released from planktonic and biofilm bacteria, resulting in altered neutrophil function. Neutrophils exposed to ECFs from planktonic bacteria showed significantly elevated levels of reactive oxygen species (ROS). In contrast, biofilm components from these same species of bacteria failed to induce such a response. Size-exclusion filtration of ECFs revealed that the bioactive molecule causing neutrophil ROS responses was below 3 kDa. Intensive heat, nuclease, lipase, or protease treatments of the <3 kDa fractions did not alter neutrophil functional responses. Protoporphyrin IX (PPIX) is an important heme precursor and growth requirement for many anaerobes. Porphyromonas species can accumulate environmental PPIX at the cell surface as a strategy to protect the bacteria from oxidative stress and we investigated the direct interaction of bovine neutrophils with PPIX. In the present study, evidence suggests that the accumulation of protoporphyrin in these dual-species biofilm ECFs attenuates neutrophil ROS production and chemotaxis. The diminished neutrophil response to biofilm ECFs via the action of PPIX may represent a biofilm immune-evasion strategy that could assist in explaining the ineffectual host clearance of biofilm-mediated infections involving these bacteria.

8.
Int J Parasitol ; 52(5): 285-292, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077730

RESUMO

Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.


Assuntos
Cisteína Proteases , Giardia lamblia , Mucinas , Receptor PAR-2 , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Expressão Gênica , Giardia lamblia/enzimologia , Giardia lamblia/genética , Células Caliciformes/metabolismo , Humanos , Mucinas/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
9.
Antioxid Redox Signal ; 36(4-6): 211-219, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33691464

RESUMO

Significance: Hydrogen sulfide (H2S), an important regulator of physiology and health, helps resolve inflammation and promotes tissue repair in the gastrointestinal tract. Recent Advances: Gut microbiota live as a multispecies biofilm in close interaction with the upper mucus layer lining the epithelium. The relative abundance, spatial organization, and function of these microorganisms affect a broad range of health outcomes. This article provides a state-of-the-art review of our understanding of the cross talk between H2S, the gut microbiota, and health. H2S can have toxic or therapeutic effects, depending on its concentration and source. When produced at excessive concentrations by local microbiota, H2S may cause mucus disruption and inflammation and contribute to development of cancer. In contrast, low levels of endogenous or exogenous H2S directly stabilize mucus layers, prevent fragmentation and adherence of the microbiota biofilm to the epithelium, inhibit the release of invasive pathobionts, and help resolve inflammation and tissue injury. Although scarce, research findings suggest that dietary H2S obtained from plants or ingestion of the H2S precursor, L-cysteine, may also modulate the abundance and function of microbiota. Critical Issues: A critical issue is the lack of understanding of the metagenomic, transcriptomic, and proteomic alterations that characterize the interactions between H2S and gut microbiota to shape health outcomes. Future Directions: The ambivalent roles of H2S in the gut offer a fertile ground for research on such critical issues. The findings will improve our understanding of how H2S modulates the microbiota to affect body function and will help identify novel therapeutic strategies. Antioxid. Redox Signal. 36, 211-219.


Assuntos
Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Microbiota , Trato Gastrointestinal , Sulfeto de Hidrogênio/farmacologia , Proteômica
10.
Front Public Health ; 9: 726484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778169

RESUMO

Current limitations in the understanding and control of antimicrobial resistance (AMR) in Canada are described through a comprehensive review focusing on: (1) treatment optimization; (2) surveillance of antimicrobial use and AMR; and (3) prevention of transmission of AMR. Without addressing gaps in identified areas, sustained progress in AMR mitigation is unlikely. Expert opinions and perspectives contributed to prioritizing identified gaps. Using Canada as an example, this review emphasizes the importance and necessity of a One Health approach for understanding and mitigating AMR. Specifically, antimicrobial use in human, animal, crop, and environmental sectors cannot be regarded as independent; therefore, a One Health approach is needed in AMR research and understanding, current surveillance efforts, and policy. Discussions regarding addressing described knowledge gaps are separated into four categories: (1) further research; (2) increased capacity/resources; (3) increased prescriber/end-user knowledge; and (4) policy development/enforcement. This review highlights the research and increased capacity and resources to generate new knowledge and implement recommendations needed to address all identified gaps, including economic, social, and environmental considerations. More prescriber/end-user knowledge and policy development/enforcement are needed, but must be informed by realistic recommendations, with input from all relevant stakeholders. For most knowledge gaps, important next steps are uncertain. In conclusion, identified knowledge gaps underlined the need for AMR policy decisions to be considered in a One Health framework, while highlighting critical needs to achieve realistic and meaningful progress.


Assuntos
Anti-Infecciosos , Saúde Única , Animais , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Farmacorresistência Bacteriana , Política de Saúde , Humanos
11.
Microbiome ; 9(1): 186, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517928

RESUMO

BACKGROUND: Studies on the inhibition of inflammation by infection with helminth parasites have, until recently, overlooked a key determinant of health: the gut microbiota. Infection with helminths evokes changes in the composition of their host's microbiota: one outcome of which is an altered metabolome (e.g., levels of short-chain fatty acids (SCFAs)) in the gut lumen. The functional implications of helminth-evoked changes in the enteric microbiome (composition and metabolites) are poorly understood and are explored with respect to controlling enteric inflammation. METHODS: Antibiotic-treated wild-type, germ-free (GF) and free fatty-acid receptor-2 (ffar2) deficient mice were infected with the tapeworm Hymenolepis diminuta, then challenged with DNBS-colitis and disease severity and gut expression of the il-10 receptor-α and SCFA receptors/transporters assessed 3 days later. Gut bacteria composition was assessed by 16 s rRNA sequencing and SCFAs were measured. Other studies assessed the ability of feces or a bacteria-free fecal filtrate from H. diminuta-infected mice to inhibit colitis. RESULTS: Protection against disease by infection with H. diminuta was abrogated by antibiotic treatment and was not observed in GF-mice. Bacterial community profiling revealed an increase in variants belonging to the families Lachnospiraceae and Clostridium cluster XIVa in mice 8 days post-infection with H. diminuta, and the transfer of feces from these mice suppressed DNBS-colitis in GF-mice. Mice treated with a bacteria-free filtrate of feces from H. diminuta-infected mice were protected from DNBS-colitis. Metabolomic analysis revealed increased acetate and butyrate (both or which can reduce colitis) in feces from H. diminuta-infected mice, but not from antibiotic-treated H. diminuta-infected mice. H. diminuta-induced protection against DNBS-colitis was not observed in ffar2-/- mice. Immunologically, anti-il-10 antibodies inhibited the anti-colitic effect of H. diminuta-infection. Analyses of epithelial cell lines, colonoids, and colon segments uncovered reciprocity between butyrate and il-10 in the induction of the il-10-receptor and butyrate transporters. CONCLUSION: Having defined a feed-forward signaling loop between il-10 and butyrate following infection with H. diminuta, this study identifies the gut microbiome as a critical component of the anti-colitic effect of this helminth therapy. We suggest that any intention-to-treat with helminth therapy should be based on the characterization of the patient's immunological and microbiological response to the helminth.


Assuntos
Colite , Helmintos , Himenolepíase , Animais , Bactérias/genética , Colite/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C
12.
Pathogens ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578195

RESUMO

Enteric tuft cells are chemosensory epithelial cells gaining attention in the field of host-parasite interactions. Expressing a repertoire of chemosensing receptors and mediators, these cells have the potential to detect lumen-dwelling helminth and protozoan parasites and coordinate epithelial, immune, and neuronal cell defenses against them. This review highlights the versatility of enteric tuft cells and sub-types thereof, showcasing nuances of tuft cell responses to different parasites, with a focus on helminths reflecting the current state of the field. The role of enteric tuft cells in irritable bowel syndrome, inflammatory bowel disease and intestinal viral infection is assessed in the context of concomitant infection with parasites. Finally, the review presents pertinent questions germane to understanding the enteric tuft cell and its role in enteric parasitic infections. There is much to be done to fully elucidate the response of this intriguing cell type to parasitic-infection and there is negligible data on the biology of the human enteric tuft cell-a glaring gap in knowledge that must be filled.

13.
Sci Rep ; 11(1): 18842, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552170

RESUMO

Exogenous factors that may influence the pathophysiology of Giardia infection remain incompletely understood. We have investigated the role of dietary fat in the pathogenesis of Giardia infection. Male 3 to 4-week-old C57BL/6 mice were fed either a low fat (LF) or a high fat (HF) diet for 12 days and challenged with G. duodenalis. In infected animals, the trophozoite burden was higher in HF + Giardia mice compared to the LF + Giardia group at day 7 post infection. Fatty acids exerted direct pro-growth effects on Giardia trophozoites. Analysis of disease parameters showed that HF + Giardia mice exhibited more mucosal infiltration by inflammatory cells, decreased villus/crypt ratios, goblet cell hyperplasia, mucus disruption, increased gut motility, and elevated fecal water content compared with LF + Giardia. HF diet-dependent exacerbation of Giardia-induced goblet cell hyperplasia was associated with elevated Atoh1 and Muc2 gene expression. Gut microbiota analysis revealed that the HF diet alone induces a taxonomic shift. HF + Giardia mice exhibited microbiota dysbiosis characterized by an increase of Firmicutes and a decrease of Bacteroidetes and significant changes in α- and ß-diversity metrics. Taken together, the findings suggest that a HF diet exacerbates the outcome of Giardia infection. The data demonstrate that elevated dietary fat represents an important exogenous factor promoting the pathophysiology of giardiasis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Microbioma Gastrointestinal/fisiologia , Giardíase/etiologia , Inflamação/etiologia , Animais , Citocinas/sangue , Dieta com Restrição de Gorduras/efeitos adversos , Ácidos Graxos/efeitos adversos , Giardia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/antagonistas & inibidores , Trofozoítos
14.
Nat Rev Gastroenterol Hepatol ; 18(5): 314-334, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33510461

RESUMO

Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.


Assuntos
Biofilmes , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Gastroenteropatias/patologia , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiopatologia , Homeostase , Humanos , Mucosa/microbiologia , Mucosa/patologia , Mucosa/fisiologia , Mucosa/fisiopatologia
15.
J Crohns Colitis ; 15(5): 787-799, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201214

RESUMO

BACKGROUND AND AIMS: Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS: Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS: Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS: Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.


Assuntos
Doença de Crohn/metabolismo , Receptores Ativados por Proteinase/metabolismo , Trombina/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/farmacologia , Ratos , Ratos Wistar , Regulação para Cima
16.
Parasite ; 27: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32788035

RESUMO

Although Giardia duodenalis is recognized as one of the leading causes of parasitic human diarrhea in the world, knowledge of the mechanisms of infection is limited, as the pathophysiological consequences of infection remain incompletely elucidated. Similarly, the reason for and consequences of the very specific genome-organization in this parasite with 2 active nuclei is only partially known. Consistent with its tradition, the 7th International Giardia and Cryptosporidium Conference (IGCC 2019) was held from June 23 to 26, 2019, at the Faculty of Medicine and Pharmacy of the University of Rouen-Normandie, France, to discuss current research perspectives in the field. This renowned event brought together an international delegation of researchers to present and debate recent advances and identify the main research themes and knowledge gaps. The program for this interdisciplinary conference included all aspects of host-parasite relationships, from basic research to applications in human and veterinary medicine, as well as the environmental issues raised by water-borne parasites and their epidemiological consequences. With regard to Giardia and giardiasis, the main areas of research for which new findings and the most impressive communications were presented and discussed included: parasite ecology and epidemiology of giardiasis, Giardia-host interactions, and cell biology of Giardia, genomes and genomic evolution. The high-quality presentations discussed at the Conference noted breakthroughs and identified new opportunities that will inspire researchers and funding agencies to stimulate future research in a "one health" approach to improve basic knowledge and clinical and public health management of zoonotic giardiasis.


TITLE: Mise à jour sur Giardia et la giardiase : faits saillants de la Septième Conférence Internationale sur Giardia et Cryptosporidium. ABSTRACT: Bien que Giardia duodenalis soit reconnu comme l'une des principales causes de diarrhée parasitaire humaine dans le monde, la connaissance des mécanismes de l'infection est limitée, car ses conséquences physiopathologiques restent incomplètement élucidées. De même, la raison et les conséquences de l'organisation génomique très spécifique de ce parasite à deux noyaux actifs ne sont que partiellement connues. Conformément à sa tradition, la 7ème Conférence internationale sur Giardia et Cryptosporidium (IGCC 2019) s'est tenue du 23 au 26 juin 2019, à la Faculté de médecine et de pharmacie de l'Université de Rouen-Normandie, France, pour discuter des perspectives de recherche actuelles dans ce champ. Cet événement de renom a réuni une délégation internationale de chercheurs pour présenter et débattre des avancées récentes et identifier les principaux thèmes de recherche et les lacunes dans les connaissances. Le programme de cette conférence interdisciplinaire comprenait tous les aspects des relations hôtes-parasites, de la recherche fondamentale aux applications en médecine humaine et vétérinaire, ainsi que les problèmes environnementaux soulevés par les parasites d'origine hydrique et leurs conséquences épidémiologiques. En ce qui concerne Giardia et la giardiase, les principaux domaines de recherche pour lesquels de nouvelles découvertes et les communications les plus impressionnantes ont été présentées et discutées comprenaient : l'écologie parasitaire et l'épidémiologie de la giardiase, les interactions Giardia-hôte, la biologie cellulaire de Giardia, les génomes et l'évolution génomique. Les présentations de haute qualité discutées lors de la conférence ont noté des avancées et identifié de nouvelles opportunités qui inspireront les chercheurs et les agences de financement à stimuler la recherche future dans une approche « une seule santé ¼ pour améliorer les connaissances de base et la gestion clinique et de santé publique de la giardiase zoonotique.


Assuntos
Giardia , Giardíase , Animais , Criptosporidiose/epidemiologia , Cryptosporidium/genética , França , Giardia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Humanos
17.
BMC Gastroenterol ; 20(1): 64, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164535

RESUMO

BACKGROUND: Endoscopic retrograde cholangio-pancreatography (ERCP) is commonly performed in the management of pancreatic and biliary disease. Duodenoscopes are specialized endoscopes used to perform ERCP, and inherent to their design, a high rate of persistent bacterial contamination exists even after automated reprocessing and disinfection. Consequently, in recent years, ERCP has been associated with infection transmission, leading to several fatal patient outbreaks. Due to increasing fears over widespread future duodenoscope-related outbreaks, regulatory bodies have called for alterations in the design of duodenoscopes. A duodenoscope has recently been developed that employs a disposable cap. This novel design theoretically eliminates the mechanism behind persistent bacterial contamination and infection transmission. However, there are no data demonstrating persistent bacterial contamination rates, technical success rates, or clinical outcomes associated with these duodenoscopes. METHODS: A parallel arm randomized controlled trial will be performed for which 520 patients will be recruited. The study population will consist of consecutive patients undergoing ERCP procedures for any indication at a high-volume tertiary care centre in Calgary, Alberta, Canada. Patients will be randomized to an intervention group, that will undergo ERCP with a novel duodenoscope with disposable cap, or to a control group who will undergo ERCP with a traditional duodenoscope. Co-primary outcomes will include persistent bacterial contamination rates (post automated reprocessing) and ERCP technical success rates. Secondary outcomes include clinical success rates, overall and specific early and late adverse event rates, 30-day mortality and healthcare utilization rates, procedure and reprocessing times, and ease of device use. DISCUSSION: The ICECAP trial will answer important questions regarding the use of a novel duodenoscope with disposable cap. Specifically, persistent bacterial contamination, technical performance, and relevant clinical outcomes will be assessed. Given the mortality and morbidity burden associated with ERCP-related infectious outbreaks, the results of this study have the capacity to be impactful at an international level. TRIAL REGISTRATION: This trial was registered on clinicaltrials.gov (NCT04040504) on July 31, 2019.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica/instrumentação , Infecção Hospitalar/prevenção & controle , Duodenoscópios/microbiologia , Contaminação de Equipamentos/prevenção & controle , Controle de Infecções/métodos , Equipamentos Descartáveis , Desenho de Equipamento , Humanos
18.
Int J Parasitol ; 50(4): 263-275, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32184085

RESUMO

Polymicrobial infections of the gastro-intestinal tract are common in areas with poor sanitation. Disease outcome is the result of complex interactions between the host and pathogens. Such interactions lie at the core of future management strategies of enteric diseases. In developed countries of the world, Giardia duodenalis is a common cause of diarrheal disease. In contrast, giardiasis appears to protect children against diarrhea in countries with poor sanitation, via obscure mechanisms. We hypothesized that Giardia may protect its host from disease induced by a co-infecting pathogen such as attaching and effacing Escherichia coli. This enteropathogen is commonly implicated in pediatric diarrhea in developing countries. The findings indicate that co-infection with Giardia attenuates the severity of disease induced by Citrobacter rodentium, an equivalent of A/E E. coli in mice. Co-infection with Giardia reduced colitis, blood in stools, fecal softening, bacterial invasion, and weight loss; the protective effects were lost when co-infection occurred in Nod-like receptor pyrin-containing 3 knockout mice. In co-infected mice, elevated levels of antimicrobial peptides Murine ß defensin 3 and Trefoil Factor 3, and enhanced bacterial killing, were NLRP3-dependent. Inhibition of the NLRP3 inflammasome in human enterocytes blocked the activation of AMPs and bacterial killing. The findings uncover novel NLRP3-dependent modulatory mechanisms during co-infections with Giardia spp. and A/E enteropathogens, and demonstrate how these interactions may regulate the severity of enteric disease.


Assuntos
Giardia/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Citrobacter rodentium/patogenicidade , Coinfecção , Colite/microbiologia , Diarreia/microbiologia , Enterócitos/metabolismo , Escherichia coli/patogenicidade , Interações Hospedeiro-Parasita , Imunidade Inata , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Interações Microbianas
19.
Adv Parasitol ; 107: 173-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32122529

RESUMO

Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.


Assuntos
Giardíase/complicações , Giardíase/parasitologia , Enteropatias/etiologia , Giardia lamblia/fisiologia , Giardíase/patologia , Humanos , Enteropatias/parasitologia
20.
Antioxid Redox Signal ; 33(14): 1003-1009, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32064887

RESUMO

Aims: The covalent linking of nonsteroidal anti-inflammatory drugs to a hydrogen sulfide (H2S)-releasing moiety has been shown to dramatically reduce gastrointestinal (GI) damage and bleeding, as well as increase anti-inflammatory and analgesic potency. We have tested the hypothesis that an H2S-releasing derivative of ketoprofen (ATB-352) would exhibit enhanced efficacy without significant GI damage in a mouse model of allodynia/hyperalgesia. Results: ATB-352 was significantly more potent and effective as an analgesic than ketoprofen and did not elicit GI damage. Pretreatment with an antagonist of the CB1 cannabinoid receptor (AM251) significantly reduced the analgesic effects of ATB-352. The CB1 antagonist exacerbated GI damage when coadministered with ketoprofen, but GI damage was not induced by the combination of ATB-352 and the CB1 antagonist. In vitro, ATB-352 was substantially more potent than ketoprofen as an inhibitor of fatty acid amide hydrolase, consistent with a contribution of endogenous cannabinoids to the analgesic effects of this drug. Blood anandamide levels were significantly depressed by ketoprofen, but remained unchanged after treatment with ATB-352. Innovation: Ketoprofen is a potent analgesic, but its clinical use, even in the short term, is significantly limited by its propensity to cause significant ulceration and bleeding in the GI tract. Covalently linking an H2S-releasing moiety to ketoprofen profoundly reduces the GI toxicity of the drug, while boosting analgesic effectiveness. Conclusion: This study demonstrates a marked enhancement of the potency and effectiveness of ATB-352, an H2S-releasing derivative of ketoprofen, in part, through the involvement of the endogenous cannabinoid system. This may have significant advantages for the control and management of pain, such as in a postoperative setting.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Canabinoides/metabolismo , Canabinoides/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Sinergismo Farmacológico , Ácidos Graxos/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Sulfeto de Hidrogênio/efeitos adversos , Sulfeto de Hidrogênio/química , Cetoprofeno/farmacologia , Camundongos , Dor/tratamento farmacológico , Dor/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA