Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 11(1): 220-230, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-24753390

RESUMO

Current cardiac cell therapies cannot effectively target and retain cells in a specific area of the heart. Cell-seeded biological sutures were previously developed to overcome this limitation, demonstrating targeted delivery with > 60% cell retention. In this study, both cell-seeded and non-seeded fibrin-based biological sutures were implanted into normal functioning rat hearts to determine the effects on mechanical function and fibrotic response. Human mesenchymal stem cells (hMSCs) were used based on previous work and established cardioprotective effects. Non-seeded or hMSC-seeded sutures were implanted into healthy athymic rat hearts. Before cell seeding, hMSCs were passively loaded with quantum dot nanoparticles. One week after implantation, regional stroke work index and systolic area of contraction (SAC) were evaluated on the epicardial surface above the suture. Cell delivery and retention were confirmed by quantum dot tracking, and the fibrotic tissue area was evaluated. Non-seeded biological sutures decreased SAC near the suture from 0.20 ± 0.01 measured in sham hearts to 0.08 ± 0.02, whereas hMSC-seeded biological sutures dampened the decrease in SAC (0.15 ± 0.02). Non-seeded sutures also displayed a small amount of fibrosis around the sutures (1.0 ± 0.1 mm2 ). Sutures seeded with hMSCs displayed a significant reduction in fibrosis (0.5 ± 0.1 mm2 , p < 0.001), with quantum dot-labelled hMSCs found along the suture track. These results show that the addition of hMSCs attenuates the fibrotic response observed with non-seeded sutures, leading to improved regional mechanics of the implantation region. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Coração/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Suturas , Animais , Diferenciação Celular , Sobrevivência Celular , Transplante de Células , Fibrina/farmacologia , Fibrose , Humanos , Masculino , Pontos Quânticos , Ratos , Ratos Nus , Estresse Mecânico , Engenharia Tecidual , Alicerces Teciduais
2.
J Biomed Mater Res A ; 101(3): 809-18, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22961975

RESUMO

Advances in regenerative medicine have improved the potential of using cellular therapy for treating several diseases. However, the effectiveness of new cellular therapies is largely limited by low cell engraftment and inadequate localization. To improve on these limitations, we developed a novel delivery mechanism using cell-seeded biological sutures. We demonstrate the ability of cell-seeded biological sutures to efficiently implant human mesenchymal stem cells (hMSCs) to specific regions within the beating heart; a tissue known to have low cell retention and engraftment shortly after delivery. Cell-seeded biological sutures were developed by bundling discrete microthreads extruded from extracellular matrix proteins, attaching a surgical needle to the bundle and seeding the bundle with hMSCs. During cell preparation, hMSCs were loaded with quantum dot nanoparticles for cell tracking within the myocardium. Each biological suture contained an average of 5903 ± 1966 hMSCs/cm suture length. Delivery efficiency was evaluated by comparing cell-seeded biological suture implantation with intramyocardial (IM) cell injections (10,000 hMSCs in 35 µL) into the left ventricle of normal, noninfarcted rat hearts after 1 h. Delivery efficiency of hMSCs by biological sutures (63.6 ± 10.6%) was significantly higher than IM injection (11.8 ± 6.2%; p < 0.05). Cell-tracking analysis indicated suture-delivered hMSCs were found throughout the thickness of the ventricular myocardium: along the entire length of the biological suture track, localizing closely with native myocardium. These results suggest cell-seeded biological sutures can deliver cells to the heart more efficiently than conventional methods, demonstrating an effective delivery method for implanting cells in soft tissue.


Assuntos
Ventrículos do Coração/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Suturas , Animais , Humanos , Transplante de Células-Tronco Mesenquimais/instrumentação , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA