Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1535-1545, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36790483

RESUMO

Morphine is among the most powerful analgesics and pain-relieving agents. However, its addictive properties limit their medical use because patients may be susceptible to abuse and reinstatement. Morphine addiction occurs because of dopamine release in the mesolimbic brain area, implying in an increase in oxidative stress. Ferulic acid (FA), a phenolic phytochemical found in a variety of foods, has been reported to exert antioxidant and neuroprotective effects; however, its low bioavailability makes its nano-encapsulated form a promising alternative. This study aimed to evaluate the protective effects of a novel nanosystem with FA on morphine reinstatement and the consequent molecular neuroadaptations and oxidative status in the mesolimbic region. Rats previously exposed to morphine in conditioned place preference (CPP) paradigm were treated with ferulic acid-loaded nanocapsules (FA-Nc) or nonencapsulated FA during morphine-preference extinction. Following the treatments, animals were re-exposed to morphine to induce the reinstatement. While morphine-preference extinction was comparable among all experimental groups, FA-Nc treatment prevented morphine reinstatement. In the dorsal striatum, while morphine exposure increased lipid peroxidation (LP) and reactive species (RS), FA-Nc decreased LP and FA decreased RS levels. Morphine exposure increased the dopaminergic markers (D1R, D3R, DAT) and ΔFosB immunoreactivity in the ventral striatum; however, FA-Nc treatment decreased D1R, D3R, and ΔFosB and increased D2R, DAT, and NRF2. In conclusion, FA-Nc treatment prevented the morphine reinstatement, promoted antioxidant activity, and modified the dopaminergic neurotransmission, NRF2, and ΔFosB, what may indicate a neuroprotective and antioxidant role of this nanoformulation.


Assuntos
Dopamina , Morfina , Ratos , Animais , Morfina/farmacologia , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Encéfalo
3.
Neurochem Int ; 150: 105157, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390773

RESUMO

Besides their clinical application, chronic misuse of opioids has often been associated to drug addiction due to their addictive properties, underlying neuroadaptations of AMPA glutamate-receptor-dependent synaptic plasticity. Topiramate (TPM), an AMPAR antagonist, has been used to treat psychostimulants addiction, despite its harmful effects on memory. This study aimed to evaluate the effects of a novel topiramate nanosystem on molecular changes related to morphine reinstatement. Rats were previously exposed to morphine in conditioned place preference (CPP) paradigm and treated with topiramate-chitosan nanoparticles (TPM-CS-NP) or non-encapsulated topiramate in solution (S-TPM) during CPP extinction; following memory performance evaluation, they were re-exposed to morphine reinstatement. While morphine-CPP extinction was comparable among all experimental groups, TPM-CS-NP treatment prevented morphine reinstatement, preserving memory performance, which was impaired by both morphine-conditioning and S-TPM treatment. In the NAc, morphine increased D1R, D2R, D3R, DAT, GluA1 and MOR immunoreactivity. It also increased D1R, DAT, GluA1 and MOR in the dorsal hippocampus. TPM-CS-NP treatment decreased D1R, D3R and GluA1 and increased DAT in the NAc, decreasing GluA1 and increasing D2 and DAT in the dorsal hippocampus. Taken together, we may infer that TPM-CS-NP treatment was able to prevent the morphine reinstatement without memory impairment. Therefore, TPM-CS-NP may be considered an innovative therapeutic tool due to its property to prevent opioid reinstatement because it acts modifying both dopaminergic and glutamatergic neurotransmission, which are commonly related to morphine addiction.


Assuntos
Quitosana/administração & dosagem , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Dependência de Morfina/metabolismo , Nanopartículas/administração & dosagem , Topiramato/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Quimioterapia Combinada , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Morfina/farmacologia , Dependência de Morfina/prevenção & controle , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores Dopaminérgicos/metabolismo
4.
Front Behav Neurosci ; 14: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903627

RESUMO

The serotonin transporter (SERT) gene, especially the short allele of the human serotonin transporter linked polymorphic region (5-HTTLPR), has been associated with the development of stress-related neuropsychiatric disorders. In line, exposure to early life stress in SERT knockout animals contributes to anxiety- and depression-like behavior. However, there is a lack of investigation of how early-life exposure to beneficial stimuli, such as tactile stimulation (TS), affects later life behavior in these animals. In this study, we investigated the effect of TS on social, anxiety, and anhedonic behavior in heterozygous SERT knockouts rats and wild-type controls and its impact on gene expression in the basolateral amygdala. Heterozygous SERT+/- rats were submitted to TS during postnatal days 8-14, for 10 min per day. In adulthood, rats were assessed for social and affective behavior. Besides, brain-derived neurotrophic factor (Bdnf) gene expression and its isoforms, components of glutamatergic and GABAergic systems as well as glucocorticoid-responsive genes were measured in the basolateral amygdala. We found that exposure to neonatal TS improved social and affective behavior in SERT+/- animals compared to naïve SERT+/- animals and was normalized to the level of naïve SERT+/+ animals. At the molecular level, we observed that TS per se affected Bdnf, the glucocorticoid-responsive genes Nr4a1, Gadd45ß, the co-chaperone Fkbp5 as well as glutamatergic and GABAergic gene expression markers including the enzyme Gad67, the vesicular GABA transporter, and the vesicular glutamate transporter genes. Our results suggest that exposure of SERT+/- rats to neonatal TS can normalize their phenotype in adulthood and that TS per se alters the expression of plasticity and stress-related genes in the basolateral amygdala. These findings demonstrate the potential effect of a supportive stimulus in SERT rodents, which are more susceptible to develop psychiatric disorders.

5.
Exp Gerontol ; 138: 111016, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32628974

RESUMO

Aging accelerates neurodegeneration, while natural and safe neuroprotective agents, such as Uncaria tomentosa, may help to overcome this problem. This study assessed the effects of U. tomentosa extract treatment on the aging process in the brain of Wistar rats. The spatial memory and learning, acetylcholinesterase (AChE) activity, and DNA damage were assessed. Animals of 14 months were tested with different doses of U. tomentosa (5 mg/kg, 15 mg/kg, and 30 mg/kg) and with different durations of treatment (one month and one year). In the Morris Water Maze (MWM), the escape latency was significantly (p < 0.0001) shorter in rats that received 5 mg/kg, 15 mg/kg, and 30 mg/kg of U. tomentosa for both one month and one year of treatment. There was a significant difference in time spent at the platform zone (p < 0.05) of the middle-aged rats treated with U. tomentosa extract for one year when compared to the control rats. The cortex and hippocampus of rats treated with U. tomentosa for one year showed significant (p > 0.05) reduction in AChE activity. DNA damage index on cortex was significantly lower (p < 0.05) in animals treated with 30 mg/kg of U. tomentosa for one month while all the tested doses demonstrated significant (p < 0.001) reductions in DNA damage index in animals treated for one year. In conclusion, U. tomentosa may represent a source of phytochemicals that could enhance memory activity, repair DNA damage, and alter AChE activity, thereby providing neuroprotection during the aging process.


Assuntos
Unha-de-Gato , Animais , Antioxidantes , Cognição , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
6.
Behav Pharmacol ; 31(4): 407-412, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32040016

RESUMO

Depression is considered a common mental disorder that affects more than 300 million people worldwide. Despite this high incidence, its etiology is not completely elucidated instigating further studies. For this purpose, different animal models are used to study routes and molecular changes involved in depression, among them the chronic administration of corticosterone. However, the knowledge about neurochemical changes after this protocol is still controversial. In this work, we evaluated serum corticosterone levels, adrenal/body weight ratio, as well as glucocorticoid receptor and brain-derived neurotrophic factor protein expression and its receptor, tropomyosin-receptor kinase B. These analyzes were performed on prefrontal cortex, hippocampus, and striatum samples taken of mice after 21 days of administration of corticosterone. Exposure to corticosterone reduced the serum corticosterone levels and the adrenal/body weight ratio. Moreover, the glucocorticoid receptor and tyrosine-receptor kinase B expression were increased in the hippocampus while the brain-derived neurotrophic factor expression was reduced in the prefrontal cortex. We also found a positive correlation between the expression of glucocorticoid receptor and tyrosine-receptor kinase B and our results suggest a possible relationship between the glucocorticoid/glucocorticoid receptor and brain-derived neurotrophic factor/tropomyosin-receptor kinase B routes after chronic corticosterone administration. To our knowledge, this is the first study that evaluate these parameters concomitantly in important mood-related structures. In addition, these results may be useful to other research groups seeking to explore new pathways and substances with therapeutic potential to treat this silent epidemic.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corticosterona/efeitos adversos , Depressão/induzido quimicamente , Glândulas Suprarrenais/fisiologia , Animais , Peso Corporal/fisiologia , Corpo Estriado/metabolismo , Corticosterona/sangue , Depressão/sangue , Hipocampo/metabolismo , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , Receptor trkB/biossíntese , Receptores de Glucocorticoides/biossíntese
7.
Behav Brain Res ; 374: 112119, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31374223

RESUMO

Haloperidol (Hal) is an antipsychotic related to movement disorders. Magnesium (Mg) showed benefits on orofacial dyskinesia (OD), suggesting its involvement with N-methyl-D-aspartate receptors (NMDAR) since it acts blocking calcium channels. Comparisons between nifedipine (NIF; a calcium channel blocker) and Mg were performed to establish the Mg mechanism. Male rats concomitantly received Hal and Mg or NIF for 28 days, and OD behaviors were weekly assessed. Both Mg and NIF decreased Hal-induced OD. Hal increased Ca2+-ATPase activity in the striatum, and Mg reversed it. In the cortex, both Mg and NIF decreased such activity. Dopaminergic and glutamatergic immunoreactivity were modified by Hal and treatments: i) in the cortex: Hal reduced D1R and D2R, increasing NMDAR immunoreactivity. Mg and NIF reversed this Hal influence on D1R and NMDAR, while only Mg reversed Hal effects on D2R levels; ii) in the striatum: Hal decreased D2R and increased NMDAR while Mg and NIF decreased D1R and reversed the Hal-induced decreasing D2R levels. Only Mg reversed the Hal-induced increasing NMDAR levels; iii) in the substantia nigra (SN): while Hal increased D1R, D2R, and NMDAR, both Mg and NIF reversed this influence on D2R, but only Mg reversed the Hal-influence on D1R levels. Only NIF reversed the Hal effects on NMDAR immunoreactivity. These findings allow us to propose that Mg may be useful to minimize Hal-induced movement disturbances. Mg molecular mechanism seems to be involved with a calcium channel blocker because the NIF group showed less expressive effects than the Mg group.


Assuntos
Discinesias/tratamento farmacológico , Haloperidol/farmacologia , Magnésio/farmacologia , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Corpo Estriado/metabolismo , Haloperidol/efeitos adversos , Magnésio/metabolismo , Masculino , Movimento/efeitos dos fármacos , Transtornos dos Movimentos/tratamento farmacológico , Neostriado/metabolismo , Nifedipino/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Substância Negra/metabolismo
8.
Toxicol Lett ; 308: 7-16, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898663

RESUMO

Opioids are addictive drugs, whose misuse evoke withdrawal and relapse. Mediterranean-based diet (MBD) is rich in n-3 polyunsaturated fatty acids (PUFA), while Western based diets (WBDs) contain saturated fatty acids including interesterified fat (IF) and palm oil (PO), influencing neural functions. We compared MBD and WBDs on morphine-induced addiction parameters. Rats fed with MBD (chow plus 20% soybean- and fish-oil- n-6/n-3 PUFA 1:1) or WBD (WBD- PO or WBD-IF: chow plus 20% of palm oil or interesterified fat, respectively; high n-6/n-3 PUFA ratio) were exposed to morphine in conditioned place preference (CPP) paradigm. Anxiety-like behavior, locomotion and thermal sensitivity were evaluated during withdrawal. After morphine-CPP extinction, animals were challenged to morphine-reinstatement to induce relapse. All groups showed morphine-CPP, WBDs favored anxiety-like behaviors per se, locomotor sensitization and thermal hipersensitivity during withdrawal, resulting in increased morphine-reinstatement in comparison to MBD, which did not show relapse. WBDs increased glucocorticoid receptor immunoreactivity in the pre-frontal cortex, increasing corticosterone (CORT) and adrenocorticotrophic hormone (ACTH) per se and after morphine-reinstatement. In the nucleus accumbens, WBDs increased dopamine transporter (DAT) and dopamine receptor-2 (D2R) immunoreactivity and decreased dopamine receptor-1 (D1R). These findings indicate that WBDs facilitate morphine-reinstatement, unlike MBD, preserving the DA system mesolimbic neuroplasticity.


Assuntos
Dieta Mediterrânea , Dieta Ocidental/efeitos adversos , Dependência de Morfina/dietoterapia , Síndrome de Abstinência a Substâncias/prevenção & controle , Animais , Ansiedade/prevenção & controle , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Dieta Mediterrânea/psicologia , Dieta Ocidental/psicologia , Modelos Animais de Doenças , Hipersensibilidade/prevenção & controle , Hipersensibilidade/psicologia , Masculino , Morfina/administração & dosagem , Dependência de Morfina/psicologia , Atividade Motora/efeitos dos fármacos , Ratos Wistar , Recidiva
9.
Mol Neurobiol ; 56(9): 6239-6250, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741369

RESUMO

Depression is a common psychiatric disease which pharmacological treatment relieves symptoms, but still far from ideal. Tactile stimulation (TS) has shown beneficial influences in neuropsychiatric disorders, but the mechanism of action is not clear. Here, we evaluated the TS influence when applied on adult female rats previously exposed to a reserpine-induced depression-like animal model. Immediately after reserpine model (1 mg/kg/mL, 1×/day, for 3 days), female Wistar rats were submitted to TS (15 min, 3×/day, for 8 days) or not (unhandled). Imipramine (10 mg/kg/mL) was used as positive control. After behavioral assessments, animals were euthanized to collect plasma and prefrontal cortex (PFC). Behavioral observations in the forced swimming test, splash test, and sucrose preference confirmed the reserpine-induced depression-like behavior, which was reversed by TS. Our findings showed that reserpine increased plasma levels of adrenocorticotropic hormone and corticosterone, decreased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B, and increased proBDNF immunoreactivity in the PFC, which were also reversed by TS. Moreover, TS reestablished glial fibrillary acidic protein and glucocorticoid receptor levels, decreased by reserpine in PFC, while glial cell line-derived neurotrophic factor was increased by TS per se. Our outcomes are showing that TS applied in adulthood exerts a beneficial influence in depression-like behaviors, modulating the HPA axis and regulating neurotrophic factors more effectively than imipramine. Based on this, our proposal is that TS, in the long term, could be considered a new therapeutic strategy for neuropsychiatric disorders improvement in adult life, which may represent an interesting contribution to conventional pharmacological treatment.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal , Depressão/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Fatores de Crescimento Neural/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Transdução de Sinais , Tato , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Depressão/sangue , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos Wistar , Reserpina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sacarose , Natação
10.
Neurosci Lett ; 690: 138-144, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30296508

RESUMO

INTRODUCTION: amphetamine (AMPH) is related to development of addiction, anxiety-like behaviors and impairments of memory after chronic use. In the current experiment, an ultra-high dilution (10-24mg/mL) of AMPH was used, consisting of the AMPH isotherapic (AMPH-ISO), which can be used as a replacement therapy to treat AMPH addiction. AIM: To verify the influence of AMPH-ISO on toxicological aspects of AMPH addiction. METHODS: Rats received d,l-AMPH (4.0 mg/kg, i.p.) in the conditioned place preference (CPP) paradigm (8 days). Then, half of each experimental group (AMPH or saline) received AMPH-ISO/vehicle (0.2 mL per rat, once a day), for fourteen days. On the fifteenth day, animals were re-assessed in the CPP paradigm (to verify relapse behaviors) after a single dose of AMPH (2.0 mg/kg). Subsequently, anxiety-like behaviors were quantified, followed by ex vivo assays in the pre-frontal cortex. RESULTS: AMPH-ISO prevented relapse-like behavior of AMPH and reduced anxiety-like behavior per se in animals co-treated with AMPH. Molecular analysis evidenced that AMPH-ISO modulated dopaminergic targets (dopamine transporter, tyrosine hydroxylase and D1-R), whose immunoreactivity was increased by AMPH. Also, AMPH-ISO increased catalase activity and NPSH levels and reduced lipid peroxidation and protein carbonyl levels in the prefrontal cortex. CONCLUSION: This study shows that an ultra-high dilution of AMPH may be a useful alternative which can contribute with AMPH addiction treatment.


Assuntos
Anfetamina/farmacologia , Comportamento Aditivo/prevenção & controle , Condicionamento Clássico/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Comportamento Aditivo/tratamento farmacológico , Catalase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Receptores de Dopamina D1/metabolismo , Compostos de Sulfidrila/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Food Chem Toxicol ; 110: 25-32, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28974443

RESUMO

Considering the high consumption of processed foods, interesterified fat (IF) has been used to replace trans fat, since it may harm nervous system functions. Opioids are intensely used to alleviate pain, and have a highly addictive potential. Therefore, their improper use is related to addiction, tolerance, and withdrawal syndrome. Wistar rats received soybean oil (SO) or IF during gestation, lactation and post-weaning until pups' adolescence. On post-natal day 39, animals received morphine (4 mg/kg i.p.) in the conditioned place preference (CPP) paradigm. SO group showed morphine preference during drug withdrawal, while IF group showed no preference or withdrawal symptoms, but higher sensitivity to thermal stimuli than SO group. Morphine contidioning increased dopamine 1 receptor (D1R) and NMDAR: N-methyl-d-aspartate receptor (NMDAR) immunoreactivity in the hippocampus of SO, whereas these molecular changes were not observed in IF group. Regardless of morphine conditioning, IF group showed increased Kappa opioid receptor (KOR) immunoreactivity in the spinal cord, evidencing a negative correlation with thermal sensitivity. The chronic consumption of IF-rich foods during earlier periods of life may affect opioid neurotransmission, resulting in loss of rewarding effects related to this system.


Assuntos
Fast Foods/análise , Gorduras/toxicidade , Morfina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Animais , Comportamento Animal , Esterificação , Fast Foods/efeitos adversos , Gorduras/química , Gorduras/metabolismo , Feminino , Manipulação de Alimentos , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Recompensa
12.
Behav Brain Res ; 320: 400-411, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816557

RESUMO

Chronic use of typical antipsychotic haloperidolis related to movement disturbances such as parkinsonism, akathisia and tardive dyskinesia which have been related to excitotoxicity in extrapyramidal brain areas, requiring their prevention and treatment. In the current study we evaluated the influence of the magnesium on prevention (for 28days before-), reversion (for 12days after-) and concomitant supplementation on haloperidol-induced movement disorders in rats. Sub-chronic haloperidol was related to orofacial dyskinesia (OD) and catalepsy development, increased generation of reactive species (RS) and levels of protein carbonyl (PC) in cortex, striatum and substantia nigra (SN) in all experimental protocols. When provided preventatively, Mg reduced the increase of OD and catalepsy time 14 and 7days after haloperidol administration, respectively. When supplemented after haloperidol-induced OD establishment, Mg reversed this behavior after 12days, while catalepsy was reversed after 6days of Mg supplementation.When Mg was concomitantly supplemented with haloperidol administration, OD and catalepsy were prevented. Moreover, Mg supplementation was able to prevent the RS generation in both cortex and SN, reducing PC levels in all brain areas evaluated. When supplemented after haloperidol, Mg reversed RS generation in cortex and striatum, decreasing PC levels in SN and striatum.The co-administration of haloperidol and Mg supplementation prevented RS generation in cortex, striatum and SN, and PC levels in the SN.These outcomes indicate that Mg supplementation may be a useful alternative to prevent movement disturbances resulting of classic antipsychotic pharmacotherapy as haloperidol.


Assuntos
Antipsicóticos/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Discinesias/tratamento farmacológico , Haloperidol/farmacologia , Magnésio/farmacologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Embrião de Galinha , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesias/etiologia , Haloperidol/administração & dosagem , Masculino , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
13.
Hippocampus ; 27(2): 210-220, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27874237

RESUMO

Recent studies have shown that tactile stimulation (TS) in pups is able to prevent and/or minimize fear, anxiety behaviors, and addiction to psychostimulant drugs in adult rats. In these studies, animals have been exposed to handling from postnatal day (PND) 1-21. This study was designed to precisely establish which period of preweaning development has a greater influence of TS on neuronal development. After birth, male pups were exposed to TS from PND1-7, PND8-14, and PND15-21. In adulthood, the different periods of postnatal TS were assessed through behavioral, biochemical, and molecular assessments. Animals that received TS from PND8-14 showed lower anxiety-like symptoms, as observed by decreased anxiety index in elevated plus maze. This same TS period was able to improve rats' working memory by increasing the percentage of alternation rate in Y-maze, and induce better ability to cope with stressful situations, as showed in the defensive burying test by a reduced time of burying behavior. On the other hand, animals receiving TS in the first week of life showed longest cumulative burying time, which is directly related to increased anxiety-like behavior. Moreover, TS from PND8-14 showed lower corticosterone levels and better oxidative status, as observed by decreased lipid peroxidation and increased catalase activity in the hippocampus. Brain-derived neurotrophic factor (BDNF) immunocontent was increased in the hippocampus of animals receiving TS from PND8-14, while glucocorticoid receptors immunocontent was decreased in both TS1-7 and TS15-21 , but not TS8-14 . To the best of our knowledge, this study is the first to show TS can be more efficient if applied over a focused period of neonatal development (PND8-14) and this beneficial influence can be reflected on reduced emotionality and increased ability to address stressful situations in adulthood. © 2016 Wiley Periodicals, Inc.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Manobra Psicológica , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Receptores de Glucocorticoides/metabolismo , Tato , Adaptação Psicológica/fisiologia , Animais , Animais Recém-Nascidos , Ansiedade/metabolismo , Catalase/metabolismo , Corticosterona/sangue , Comportamento Exploratório/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Atividade Motora/fisiologia , Estimulação Física , Distribuição Aleatória , Ratos Wistar , Método Simples-Cego
14.
Colloids Surf B Biointerfaces ; 145: 748-756, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27295491

RESUMO

This work aimed to develop nanocapsules (NC) coated with polysorbate 80 (P80), cationic chitosan (CS) or polyethylene glycol (PEG) using clozapine (CZP) as the drug model. The zeta potential, pH and encapsulation efficiency were directly affected by the CS coating. Using the bag dialysis method, the in vitro CZP release from CS-coated nanocapsules was similar to the PEG-coated at pH 7.4. Nanocapsules coated with PEG and CS exhibited an increased action duration compared to the P80-coated nanocapsules in pseudo-psychosis induced by d,l-amphetamine in rats. When comparing both groups, the group administered CS-coated nanocapsules showed better activity than the PEG-coated nanocapsules at 6, 10 and 12h after d,l-amphetamine administration. The pharmacokinetic assessment in rats demonstrated that the observed half-lives were free CZP

Assuntos
Clozapina/química , Portadores de Fármacos/química , Quitosana/química , Concentração de Íons de Hidrogênio , Nanocápsulas/química , Polietilenoglicóis/química , Polissorbatos/química
15.
J Nanosci Nanotechnol ; 15(1): 800-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328444

RESUMO

In previous works, we developed nanocapsules and nanoemulsions containing the tea tree oil. The aim of this work was to prepare and characterize hydrogels containing these nanocarriers, and to evaluate their in vivo efficacy in protecting skin damage induced by UVB and cutaneous wound healing. Hydrogels were prepared using Carbopol Ultrez and their physicochemical characteristics were evaluated: macroscopic analysis, pH, spreadability and rheological properties. The in vivo antiedematogenic effect was evaluated by ear thickness measurement after UVB-irradiation. In order to evaluate healing action of hydrogels, we investigated the regression of the cutaneous lesion in rats. Hydrogels showed homogeneous aspect and pH values between 5.6-5.8 and a non-Newtonian behavior. The presence of nanocapsules and nanoemulsions in hydrogels did not change their spreadability profile. The inclusion of tea tree oil in the nanocapsules and nanoemulsions allowed reducing the edema induced by UVB exposure. Hydrogel containing nanocapsules presented a higher reduction of the wound area compared to the hydrogel containing nanoemulsions and hydrogel containing allantoin. This study shows the feasibility of obtained dermatological formulations containing the tea tree oil associated in nanostructured systems. These formulations represent a promising approach to topical treatment of inflammatory disorders and wound healing.


Assuntos
Hidrogéis/farmacologia , Nanocápsulas/química , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios , Edema , Hidrogéis/química , Masculino , Substâncias Protetoras/química , Ratos , Ratos Wistar , Pele/lesões , Pele/fisiopatologia , Óleo de Melaleuca/química
16.
Brain Res Bull ; 118: 78-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26393778

RESUMO

PURPOSE: To evaluate the toxicity of chronic consumption of processed foods that are rich in trans fat on the lipid composition of brain membranes, as well as its functional repercussions. METHODS: A second generation of male rats born from mothers and grandmothers supplemented with soybean oil (SOC, an isocaloric control group) or hydrogenated vegetable fat (HVF, rich in TFA) (3g/kg; p.o.) were kept under oral treatment until 90 days of age, when they were exposed to an AMPH-induced model of mania. RESULTS: The HVF group presented 0.38% of TFA incorporation in the striatum, affecting Na(+)/K(+) ATPase activity, which was decreased per se and following AMPH-exposure. The HVF group also showed increased protein carbonyl (PC) and brain-derived neurotrophic factor (BDNF) mRNA levels after AMPH administration, while these oxidative and molecular changes were not observed in the other experimental groups. Additionally, a negative correlation between striatal Na(+)/K(+) ATPase activity and PC levels (r(2)=0.49) was observed. CONCLUSION: The prolonged consumption of trans fat allows TFA incorporation and increases striatal oxidative status, thus impairing the functionality of Na(+)/K(+)-ATPase and affecting molecular targets as BDNF mRNA. We hypothesized that the chronic intake of processed foods (rich in TFA) facilitates the development of neuropsychiatric diseases, particularly bipolar disorder.


Assuntos
Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/biossíntese , ATPase Trocadora de Sódio-Potássio/metabolismo , Ácidos Graxos trans/toxicidade , Anfetamina/farmacologia , Animais , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/enzimologia , Transtorno Bipolar/genética , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Expressão Gênica , Masculino , Membranas/metabolismo , Atividade Motora/efeitos dos fármacos , Carbonilação Proteica , RNA Mensageiro/genética , Ratos , Óleo de Soja/administração & dosagem , Ácidos Graxos trans/administração & dosagem , Ácidos Graxos trans/metabolismo
17.
J Biomed Nanotechnol ; 11(8): 1482-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295148

RESUMO

This study aimed to investigate the pharmacokinetics, tissue distribution and antipsychotic activity of olanzapine administered as free drug (OLA-FREE) or loaded into lipid-core nanocapsules (OLA-LNC). OLA-LNC were successfully developed with a particle size of 142 ± 4 nm and a zeta potential of -19.6 ± 0.6 mV. Pharmacokinetics and tissue distribution studies were carried out after the administration of free and nanoencapsulated olanzapine (10 mg/kg) by intraperitoneal route to male Wistar rats. Higher olanzapine concentrations and AUC(0-12 h) were found in plasma and tissues evaluated after the administration of OLA-LNC compared to the drug in the free form, resulting in a relative bioavailability of 226.7% in the plasma. As a result olanzapine loaded lipid-core nanocapsules presented pronounced and long-lasting effects on central nervous system. These nanocapsules (10 mg/kg, i.p.) significantly diminished the stereotyped behavior induced by D,L-amphetamine up to 12 hours whereas olanzapine free-form (10 mg/kg, i.p.) was effective during 03 hours only. Moreover, olanzapine loaded lipid-core nanocapsules (1.0 mg/kg, i.p.) have shown a marked sedative effect and also prevented the prepulse inhibition disruption induced by apomorphine at lower dose than olanzapine in free-form (2.5 mg/kg, i.p.). Herewith, we point to the nanoencapsulation as a strategy for reducing the concentration of olanzapine in pharmaceutical formulations.


Assuntos
Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacocinética , Encéfalo/metabolismo , Nanocápsulas/química , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/química , Antipsicóticos/farmacocinética , Benzodiazepinas/química , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Difusão , Taxa de Depuração Metabólica , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Olanzapina , Especificidade de Órgãos , Tamanho da Partícula , Ratos , Ratos Wistar , Resultado do Tratamento
18.
J Dermatol Sci ; 79(3): 298-304, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26195090

RESUMO

BACKGROUND: Pruritus and discomfort are often present in patients with xerosis and atopic dermatitis. Several studies suggest an important role of diet in skin pathophysiology. OBJECTIVE: This study evaluated the effect of dietary fatty acids in the skin physiology via an itch-related animal model with and without supplementation with fish oil (FO), a source of polyunsaturated fatty acids (PUFA), especially omega 3 (n-3). METHODS: Male Wistar rats were divided into two groups-non-supplemented (control) and supplemented with FO (3g/kg/day) by gavage for 90 days. Every 30 days, scratching and skin parameters (transepidermal water loss (TEWL), hydration, and local blood flow) were evaluated before and after dorsal skin exposure to acetone to induce the itch-related dry skin. At the end of the study, animals were sacrificed, and skin samples collected for fatty acids composition analysis by GC-FID. RESULTS: FO supplementation reduced the TEWL and increased the skin hydration, with significant changes from day 60 on, while skin microcirculation registered no changes. It also alleviated the acetone induced skin barrier alteration, revealed by a faster resolution of TEWL and hydration, and elimination of itch-related scratching induced by dry skin. These changes were associated with the shift in the skin fatty acids incorporation pattern (richer in n-3 with n-6/n-3<5) resulting from the FO supplementation. CONCLUSION: Skin barrier dynamics seem to be influenced by FO n-3 PUFA, with suppressive effects on the scratching behaviour induced by dry skin. Hence, long-term supplementation with n-3 PUFA rich nutrients might reinforce and restore cutaneous integrity and function.


Assuntos
Óleos de Peixe/farmacologia , Dermatopatias/tratamento farmacológico , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pele/química , Acetona , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/farmacologia , Masculino , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Prurido/fisiopatologia , Ratos , Ratos Wistar , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Dermatopatias/induzido quimicamente , Dermatopatias/fisiopatologia , Água/análise , Perda Insensível de Água
19.
Biol Trace Elem Res ; 166(2): 163-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25686766

RESUMO

Reserpine administration results in a predictable animal model of orofacial dyskinesia (OD) that has been largely used to access movement disturbances related to extrapyramidal oxidative damage. Here, OD was acutely induced by reserpine (two doses of 0.7 mg/kg subcutaneous (s.c.)), every other day for 3 days), which was administered after (experiment 1) and before (experiment 2) magnesium (Mg) supplementation (40 mg/kg/mL, peroral (p.o.)). In experiment 1, Mg was administered for 28 days before reserpine treatment, while in experiment 2, it was initiated 24 h after the last reserpine administration and was maintained for 10 consecutive days. Experiment 1 (prevention) showed that Mg supplementation was able to prevent reserpine-induced OD and catalepsy development. Mg was also able to prevent reactive species (RS) generation, thus preventing increase of protein carbonyl (PC) levels in both cortex and substantia nigra, but not in striatum. Experiment 2 (reversion) showed that Mg was able to decrease OD and catalepsy at all times assessed. In addition, Mg was able to decrease RS generation, with lower levels of PC in both cortex and striatum, but not in substantia nigra. These outcomes indicate that Mg is an important metal that should be present in the diet, since its intake is able to prevent and minimize the development of movement disorders closely related to oxidative damage in the extrapyramidal brain areas, such as OD.


Assuntos
Encéfalo/metabolismo , Magnésio/farmacologia , Magnésio/uso terapêutico , Transtornos dos Movimentos/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Transtornos dos Movimentos/etiologia , Ratos , Ratos Wistar , Reserpina/toxicidade
20.
Photochem Photobiol ; 91(2): 424-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25600099

RESUMO

The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first-generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C-SO, rich in n-6 FA; control group) or hydrogenated vegetable fat (HVF, rich in TFA) were continued with the same supplements until adulthood, when half of each group was exposed to UVR for 12 weeks. The HVF group showed higher TFA cutaneous incorporation, increased protein carbonyl (PC) levels, decreased functionality of mitochondrial enzymes and antioxidant defenses of the skin. After UVR, the HVF group showed increased skin thickness and reactive species (RS) generation, with decreased skin antioxidant defenses. RS generation was positively correlated with skin thickness, wrinkles and PC levels. Once incorporated to skin, TFA make it more susceptible to developing UVR-induced disorders.


Assuntos
Suplementos Nutricionais , Mitocôndrias/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Óleo de Soja/administração & dosagem , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Feminino , Hidrogenação , Mitocôndrias/efeitos da radiação , Gravidez , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/efeitos da radiação , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Pele/química , Pele/metabolismo , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA