Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
3.
Front Immunol ; 14: 1178817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346044

RESUMO

Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Anticorpos , Ácidos Siálicos/metabolismo , Receptores ErbB , Microambiente Tumoral
4.
Front Immunol ; 13: 949140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052078

RESUMO

Antibody-based immunotherapy is increasingly employed to treat acute lymphoblastic leukemia (ALL) patients. Many T-ALL cells express CD38 on their surface, which can be targeted by the CD38 antibody daratumumab (DARA), approved for the treatment of multiple myeloma. Tumor cell killing by myeloid cells is relevant for the efficacy of many therapeutic antibodies and can be more efficacious with human IgA than with IgG antibodies. This is demonstrated here by investigating antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cell-mediated cytotoxicity (ADCC) by polymorphonuclear (PMN) cells using DARA (human IgG1) and an IgA2 isotype switch variant (DARA-IgA2) against T-ALL cell lines and primary patient-derived tumor cells. ADCP and ADCC are negatively regulated by interactions between CD47 on tumor cells and signal regulatory protein alpha (SIRPα) on effector cells. In order to investigate the impact of this myeloid checkpoint on T-ALL cell killing, CD47 and glutaminyl-peptide cyclotransferase like (QPCTL) knock-out T-ALL cells were employed. QPTCL is an enzymatic posttranslational modifier of CD47 activity, which can be targeted by small molecule inhibitors. Additionally, we used an IgG2σ variant of the CD47 blocking antibody magrolimab, which is in advanced clinical development. Moreover, treatment of T-ALL cells with all-trans retinoic acid (ATRA) increased CD38 expression leading to further enhanced ADCP and ADCC, particularly when DARA-IgA2 was applied. These studies demonstrate that myeloid checkpoint blockade in combination with IgA2 variants of CD38 antibodies deserves further evaluation for T-ALL immunotherapy.


Assuntos
Antígeno CD47 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoglobulina A
5.
Cancer Sci ; 112(8): 3029-3040, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058788

RESUMO

Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Antígenos de Diferenciação/química , Antineoplásicos Imunológicos/administração & dosagem , Antígeno CD47/metabolismo , Neoplasias/tratamento farmacológico , Receptores Imunológicos/química , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Antígenos de Diferenciação/metabolismo , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Sinergismo Farmacológico , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias/metabolismo , Panitumumabe/administração & dosagem , Panitumumabe/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores Imunológicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncotarget ; 8(44): 77552-77566, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100408

RESUMO

To identify antibodies suitable for multiple myeloma (MM) immunotherapy, a cellular screening approach was developed using plasma cell lines JK-6L and INA-6 and human synthetic single-chain fragment variable (scFv) phage libraries. Isolated phage antibodies were screened for myeloma cell surface reactivity. Due to its binding characteristics, phage PIII-15 was selected to generate the scFv-Fc fusion protein TP15-Fc with an Fc domain optimized for FcγRIIIa binding. Various MM cell lines and patient-derived CD138-positive malignant plasma cells, but not granulocytes, B or T lymphocytes from healthy donors were recognized by TP15-Fc. Human intercellular adhesion molecule-1 (ICAM-1/CD54) was identified as target antigen by using transfected Chinese hamster ovary (CHO) cells. Of note, no cross-reactivity of TP15-Fc with mouse ICAM-1 transfected cells was detected. TP15-Fc was capable to induce antibody-dependent cell-mediated cytotoxicity (ADCC) against different human plasma cell lines and patients' myeloma cells with peripheral blood mononuclear cells (PBMC) and purified NK cells. Importantly, TP15-Fc showed potent in vivo efficacy and completely prevented growth of human INA-6.Tu1 plasma cells in a xenograft SCID/beige mouse model. Thus, the novel ADCC-optimized TP15-Fc exerts potent anti-myeloma activity and has promising characteristics to be further evaluated for MM immunotherapy.

8.
Sci Rep ; 7(1): 7976, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801664

RESUMO

Interleukin-6 (IL-6)-activated Signal Transducer and Activator of Transcription 3 (STAT3) facilitates survival in the multiple myeloma cell line INA-6 and therefore represents an oncogenic key player. However, the biological mechanisms are still not fully understood. In previous studies we identified microRNA-21 as a STAT3 target gene with strong anti-apoptotic potential, suggesting that noncoding RNAs have an impact on the pathogenesis of human multiple myeloma. Here, we describe five long noncoding RNAs (lncRNAs) induced by IL-6-activated STAT3, which we named STAiRs. While STAiRs 1, 2 and 6 remain unprocessed in the nucleus and show myeloma-specific expression, STAiRs 15 and 18 are spliced and broadly expressed. Especially STAiR2 and STAiR18 are promising candidates. STAiR2 originates from the first intron of a tumor suppressor gene. Our data support a mutually exclusive expression of either STAiR2 or the functional tumor suppressor in INA-6 cells and thus a contribution of STAiR2 to tumorigenesis. Furthermore, STAiR18 was shown to be overexpressed in every tested tumor entity, indicating its global role in tumor pathogenesis. Taken together, our study reveals a number of STAT3-induced lncRNAs suggesting that the interplay between the coding and noncoding worlds represents a fundamental principle of STAT3-driven cancer development in multiple myeloma and beyond.


Assuntos
Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mieloma Múltiplo/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/genética
9.
Haematologica ; 102(2): 381-390, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27658435

RESUMO

Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab')2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window.


Assuntos
Receptor gp130 de Citocina/antagonistas & inibidores , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Mieloma Múltiplo/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise Citogenética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Receptores de Interleucina-6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Immunol Methods ; 418: 75-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701195

RESUMO

Immunoconjugates that deliver cytotoxic payloads to cancer cells represent a promising class of therapeutic agents which are intensively investigated in various clinical applications. Prerequisites for the generation of effective immunoconjugates are antibodies which efficiently deliver the respective cytotoxic payload. To facilitate the selection of human or mouse antibodies that display favorable characteristics as immunotoxins, we developed a novel Pseudomonas exotoxin A (ETA)-based screening protein. The α-Fc-ETA' consists of a multispecies-specific Fc-binding domain antibody genetically fused to a truncated ETA version (ETA'). α-Fc-ETA' non-covalently bound to human and mouse antibodies but did not form immune complexes with bovine immunoglobulins. In combination with antibodies harboring human or mouse Fc domains α-Fc-ETA' inhibited proliferation of antigen-expressing tumor cells. The cytotoxic effects were strictly antibody dependent and were observed with low α-Fc-ETA' concentrations. Mouse antibodies directed against CD7 and CD317/HM1.24 that previously had been used for the generation of functional recombinant immunotoxins, also showed activity in combination with α-Fc-ETA' by inhibiting growth of antigen-positive myeloma and leukemia cell lines. In contrast, α-kappa-ETA', a similarly designed human kappa light chain-specific fusion protein, was only specifically active in combination with antibodies containing a human kappa light chain. Thus, the novel α-Fc-ETA' fusion protein is broadly applicable in screening antibodies and Fc-containing antibody derivatives from different species to select for candidates with favorable characteristics for immunotoxin development.


Assuntos
ADP Ribose Transferases/imunologia , Anticorpos/análise , Anticorpos/imunologia , Toxinas Bacterianas/imunologia , Exotoxinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunotoxinas/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Recombinantes de Fusão/imunologia , Fatores de Virulência/imunologia , Animais , Humanos , Fragmentos Fc das Imunoglobulinas/análise , Camundongos , Células Tumorais Cultivadas , Exotoxina A de Pseudomonas aeruginosa
11.
Haematologica ; 100(4): 541-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682600

RESUMO

The mammalian target of rapamycin plays an important role in multiple myeloma. The allosteric mammalian target of rapamycin inhibitor everolimus has long been approved for immunosuppression and has shown activity in certain cancers. This investigator-initiated phase I trial explored the use of everolimus in relapsed and/or refractory multiple myeloma patients who had received two or more lines of prior treatment. Following a dose-escalation design, it called for a fixed dose of oral everolimus. Blood drug levels were monitored and the biological activity of everolimus was evaluated in bone marrow. Seventeen patients were enrolled (age range, 52 to 76 years). All had been previously treated with stem cell transplantation and proteasome inhibitors and almost all with immunomodulatory drugs. No dose-limiting toxicity was observed and the intended final daily dose of 10 mg was reached. Only one severe adverse event was assessed as possibly related to the study drug, namely atypical pneumonia. Remarkably few infections were observed. Although the trial was mainly designed to evaluate feasibility, anti-myeloma activity, defined as clinical benefit, was documented in ten of 15 evaluable patients at every dose level including eight patients with stable disease, one patient with minor remission and one with partial remission. However, the median time to progression was 90 days (range, 13 to 278 days). The biomarker study documented on-target activity of everolimus in malignant plasma cells as well as the microenvironment. The observed responses are promising and allow further studies to be considered, including those testing combination strategies addressing escape pathways. This trial is registered with EudraCT number 2006-002675-41.


Assuntos
Antineoplásicos/uso terapêutico , Imunossupressores/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Sirolimo/análogos & derivados , Idoso , Antineoplásicos/farmacologia , Biomarcadores , Biópsia , Medula Óssea/patologia , Everolimo , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Resultado do Tratamento
12.
Transfus Med Hemother ; 40(5): 336-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24273487

RESUMO

Almost 3 decades have passed since the discovery and cloning of IL-6, and a tremendous amount of work has contributed to the current knowledge of the biological functions of this cytokine, its receptor, and the signaling pathways that are activated. The understanding of the role of IL-6 in human disease has led to the development of novel therapeutic strategies that block the biological functions of IL-6. In clinical studies, IL-6 and IL-6 receptor antibodies have proven efficacy in rheumatoid arthritis, systemic juvenile idiopathic arthritis, and Castleman's disease, conditions that are known to be driven by IL-6. The focus of this overview is the role of IL-6 in the pathophysiology of hematological malignancies.

13.
World Hosp Health Serv ; 46(4): 4-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21391444

RESUMO

The article deals with the new opportunities for EU member state citizens to go abroad for medical treatment. The European Court of Justice has facilitated the access to medical treatment for EU citizens in other EU states. This development has worried national governments since they feared reduced control in their healthcare systems. The cross-border project "healthacross" between Austria and the Czech Republic however illustrates in which way authorities can respond to patients needs in two different countries. Nevertheless a plethora of administrative and practical problems have to be solved for cross-border co-operation in the provision of healthcare.


Assuntos
Atenção à Saúde/organização & administração , Cooperação Internacional , Europa (Continente) , Acessibilidade aos Serviços de Saúde , Humanos , Preferência do Paciente
14.
Int J Cancer ; 126(1): 239-46, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19621390

RESUMO

Nitrogen-containing bisphosphonates (N-BPs) are effective antiosteolytic agents in patients with multiple myeloma. Preclinical studies have also demonstrated that these agents have direct antitumor effects in vitro and can reduce tumor burden in a variety of animal models, although it is not clear whether such effects are caused by direct actions on tumor cells or by inhibition of bone resorption. N-BPs prevent bone destruction in myeloma by inhibiting the enzyme farnesyl pyrophosphate synthase in osteoclasts, thereby preventing the prenylation of small GTPase signaling proteins. In this study, utilizing a plasmacytoma xenograft model without complicating skeletal lesions, treatment with zoledronic acid (ZOL) led to significant prolongation of survival in severe combined immunodeficiency mice inoculated with human INA-6 plasma cells. Following treatment with a clinically relevant dose of ZOL, histological analysis of INA-6 tumors from the peritoneal cavity revealed extensive areas of apoptosis associated with poly (ADP-ribose) polymerase cleavage. Furthermore, Western blot analysis of tumor homogenates demonstrated the accumulation of unprenylated Rap1A, indicative of the uptake of ZOL by nonskeletal tumors and inhibition of farnesyl pyrophosphate synthase. These studies provide, for the first time, clear evidence that N-BPs have direct antitumor effects in plasma cell tumors in vivo and this is executed by a molecular mechanism similar to that observed in osteoclasts.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Imidazóis/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/metabolismo , Prenilação de Proteína , Transplante Heterólogo , Ácido Zoledrônico
15.
Mol Cancer Ther ; 8(1): 26-35, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19139110

RESUMO

Protein tyrosine kinases of the Janus kinase (JAK) family are associated with many cytokine receptors, which, on ligand binding, regulate important cellular functions such as proliferation, survival, and differentiation. In multiple myeloma, JAKs may be persistently activated due to a constant stimulation by interleukin (IL)-6, which is produced in the bone marrow environment. INCB20 is a synthetic molecule that potently inhibits all members of the JAK family with a 100- to 1,000-fold selectivity for JAKs over >70 other kinases. Treatment of multiple myeloma cell lines and patient tumor cells with INCB20 resulted in a significant and dose-dependent inhibition of spontaneous as well as IL-6-induced cell growth. Importantly, multiple myeloma cell growth was inhibited in the presence of bone marrow stromal cells. The IL-6 dependent cell line INA-6 was particularly sensitive to the drug (IC50<1 micromol/L). Growth suppression of INA-6 correlated with an increase in the percentage of apoptotic cells and inhibition of signal transducer and activator of transcription 3 phosphorylation. INCB20 also abrogated the protective effect of IL-6 against dexamethasone by blocking phosphorylation of SHP-2 and AKT. In contrast, AKT phosphorylation induced by insulin-like growth factor-I remained unchanged, showing selectivity of the compound. In a s.c. severe combined immunodeficient mouse model with INA-6, INCB20 significantly delayed INA-6 tumor growth. Our studies show that disruption of JAKs and downstream signaling pathways may both inhibit multiple myeloma cell growth and survival and overcome cytokine-mediated drug resistance, thereby providing the preclinical rationale for the use of JAK inhibitors as a novel therapeutic approach in multiple myeloma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citoproteção/efeitos dos fármacos , Dexametasona/farmacologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Especificidade por Substrato , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 284(4): 2235-44, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19056733

RESUMO

The adhesion receptor CD96 (TACTILE) is a transmembrane glycoprotein possessing three extracellular immunoglobulin-like domains. Among peripheral blood cells, CD96 is expressed on T cells as well as NK cells and a subpopulation of B cells. A possible function of this receptor in NK cell-mediated killing activities was suggested recently. Moreover, CD96 was described as a tumor marker for T-cell acute lymphoblastic leukemia and acute myeloid leukemia. CD96 binds to CD155 (poliovirus receptor) and nectin-1, an adhesion receptor related to CD155. Here we report that human but not mouse CD96 is expressed in two splice variants possessing either an I-like (variant 1) or V-like (variant 2) second domain. With the notable exception of an AML tumor sample, variant 2 predominates in all the CD96-expressing cell types and tissues examined. Using chimeric human/murine CD96 receptors, we show that the interaction with its ligands is mediated via the outermost V-like domain. In contrast to mouse, however, the binding of human CD96 to CD155 is sensitive to the characteristics of the two downstream domains. This is illustrated by a significantly weaker CD96/CD155 interaction mediated by variant 1 when compared with variant 2. Moreover, recent evidence suggested that mutations in human CD96 correlate with the occurrence of a rare form of trigonocephaly. One such mutation causing a single amino acid exchange in the third domain of human CD96 decreased the capacity of both variants to bind to CD155 considerably, suggesting that a CD96-driven adhesion to CD155 may be crucial in developmental processes.


Assuntos
Processamento Alternativo/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Receptores Virais/imunologia , Receptores Virais/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Linhagem Celular , Humanos , Imunoglobulinas/genética , Ligantes , Camundongos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Dobramento de Proteína , Receptores Virais/genética , Alinhamento de Sequência
17.
Blood ; 110(4): 1330-3, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17496199

RESUMO

Signal transducer and activator of transcription 3 (Stat3) is implicated in the pathogenesis of many malignancies and essential for IL-6-dependent survival and growth of multiple myeloma cells. Here, we demonstrate that the gene encoding oncogenic microRNA-21 (miR-21) is controlled by an upstream enhancer containing 2 Stat3 binding sites strictly conserved since the first observed evolutionary appearance of miR-21 and Stat3. MiR-21 induction by IL-6 was strictly Stat3 dependent. Ectopically raising miR-21 expression in myeloma cells in the absence of IL-6 significantly reduced their apoptosis levels. These data provide strong evidence that miR-21 induction contributes to the oncogenic potential of Stat3.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Interleucina-6/farmacologia , MicroRNAs/fisiologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Mieloma Múltiplo/tratamento farmacológico , Transcrição Gênica
18.
Cancer Res ; 67(4): 1783-92, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308121

RESUMO

Multiple myeloma is an incurable plasma cell neoplasia characterized by the production of large amounts of monoclonal immunoglobulins. The proteasome inhibitor bortezomib (PS-341, Velcade) induces apoptosis in various malignant cells and has been approved for treatment of refractory multiple myeloma. Inhibition of the antiapoptotic transcription factor nuclear factor-kappaB (NF-kappaB) apparently contributes to the antitumor effects of bortezomib; however, this mechanism cannot fully explain the exceptional sensitivity of myeloma cells. Extensive protein synthesis as in myeloma cells is inherently accompanied by unfolded proteins, including defective ribosomal products (DRiPs), which need to be degraded by the ubiquitin-proteasome system. Therefore, we hypothesized that the proapoptotic effect of bortezomib in multiple myeloma is mainly due to the accumulation of unfolded proteins in cells with high protein biosynthesis. Using the IgG-secreting human myeloma cell line JK-6L and murine muH-chain-transfected Ag8.H myeloma cells, apoptosis induction upon proteasome inhibition was clearly correlated with the amount of immunoglobulin production. Preferentially in immunoglobulin-high myeloma cells, bortezomib triggered activation of caspases and induction of proapoptotic CHOP, a component of the terminal unfolded protein response induced by endoplasmic reticulum (ER) stress. In immunoglobulin-high cells, bortezomib increased the levels of proapoptotic Bax while reducing antiapoptotic Bcl-2. Finally, IgG-DRiPs were detected in proteasome inhibitor-treated cells. Hence, proteasome inhibitors induce apoptosis preferentially in cells with high synthesis rate of immunoglobulin associated with accumulation of unfolded proteins/DRiPs inducing ER stress. These findings further elucidate the antitumor activities of proteasome inhibitors and have important implications for optimizing clinical applications.


Assuntos
Imunoglobulina G/biossíntese , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Humanos , Cadeias mu de Imunoglobulina/biossíntese , Mieloma Múltiplo/enzimologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazinas/farmacologia , Fator de Transcrição AP-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Br J Haematol ; 134(2): 145-56, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16846475

RESUMO

The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM). Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood. However, resistance to bortezomib as a single agent develops in the majority of patients, and activity in other malignancies has been less impressive. To elucidate mechanisms of bortezomib resistance, we compared differential gene expression profiles of bortezomib-resistant SUDHL-4 and bortezomib-sensitive SUDHL-6 diffuse large B-cell lymphoma lines in response to bortezomib. At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in SUDHL-6 cells, but not in SUDHL-4 cells. We showed that overexpression of activating transcription factor 3 (ATF3), ATF4, ATF5, c-Jun, JunD and caspase-3 is associated with sensitivity to bortezomib-induced apoptosis, whereas overexpression of heat shock protein (HSP)27, HSP70, HSP90 and T-cell factor 4 is associated with bortezomib resistance.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linfoma de Células B/genética , Linfoma Difuso de Grandes Células B/genética , Pirazinas/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib , Caspase 3 , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Reação em Cadeia da Polimerase/métodos , Inibidores de Proteassoma , Fatores de Transcrição TCF/biossíntese , Fatores de Transcrição TCF/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição , Células Tumorais Cultivadas
20.
Clin Cancer Res ; 11(11): 4251-8, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15930364

RESUMO

Interleukin-6 (IL-6) protects multiple myeloma cells against apoptosis induced by glucocorticoids. Here, we investigated whether inhibition of the IL-6 signaling pathway by the IL-6 receptor superantagonist Sant7 enhances the in vivo antitumor effects of dexamethasone on the IL-6-dependent multiple myeloma cell line INA-6. For this purpose, we used a novel murine model of human multiple myeloma in which IL-6-dependent INA-6 multiple myeloma cells were directly injected into human bone marrow implants in severe combined immunodeficient (SCID) mice (SCID-hu). The effect of in vivo drug treatments on multiple myeloma cell growth was monitored by serial determinations of serum levels of soluble IL-6 receptor (shuIL-6R), which is released by INA-6 cells and served as a marker of tumor growth. In SCID-hu mice engrafted with INA-6 cells, treatment with either Sant7 or dexamethasone alone did not induce significant reduction in serum shuIL-6R levels. In contrast, the combination of Sant7 with dexamethasone resulted in a synergistic reduction in serum shuIL-6R levels after 6 consecutive days of treatment. Gene expression profiling of INA-6 cells showed down-regulation of proliferation/maintenance and cell cycle control genes, as well as up-regulation of apoptotic genes in multiple myeloma cells triggered by Sant7 and dexamethasone combination. In vitro colony assays showed inhibition of myeloid and erythroid colonies from normal human CD34(+) progenitors in response to dexamethasone, whereas Sant7 neither inhibited colony growth nor potentiated the inhibitory effect of dexamethasone. Taken together, these results indicate that inhibition of IL-6 signaling by Sant7 significantly potentiates the therapeutic action of dexamethasone against multiple myeloma cells, providing the preclinical rationale for clinical trials of Sant7 in combination with dexamethasone to improve patient outcome in multiple myeloma.


Assuntos
Dexametasona/farmacologia , Interleucina-6/análogos & derivados , Mieloma Múltiplo/tratamento farmacológico , Receptores de Interleucina-6/antagonistas & inibidores , Animais , Antígenos CD34/análise , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/uso terapêutico , Apoptose/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Ensaio de Unidades Formadoras de Colônias , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Interleucina-6/farmacologia , Interleucina-6/uso terapêutico , Masculino , Camundongos , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Receptores de Interleucina-6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA