Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell Rep ; 17(4): 1171-1183, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760319

RESUMO

Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84%) missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/genética , Mutação de Sentido Incorreto/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosfatase 6 de Especificidade Dupla/metabolismo , Humanos , Modelos Moleculares , Fenótipo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Reprodutibilidade dos Testes
2.
Nat Chem Biol ; 12(2): 102-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656089

RESUMO

High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the gene PDE3A, encoding phosphodiesterase 3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells, whereas others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggestive of a neomorphic activity. Coexpression of SLFN12 with PDE3A correlates with DNMDP sensitivity, whereas depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Citotoxinas/farmacologia , Neoplasias/terapia , Piridazinas/química , Piridazinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/isolamento & purificação , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Genômica , Humanos , Immunoblotting
3.
J Vis Exp ; (100): e52854, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26132888

RESUMO

Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.


Assuntos
Bacteriófagos/genética , Escherichia coli/virologia , Genômica/métodos , Proteínas Virais/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Proteínas Virais/biossíntese
4.
Structure ; 23(7): 1293-304, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26027732

RESUMO

Discerning the structural building blocks of macromolecules is essential for understanding their folding and function. For a new generation of modified nucleic acid ligands (called slow off-rate modified aptamers or SOMAmers), we previously observed essential functions of hydrophobic aromatic side chains in the context of well-known nucleic acid motifs. Here we report a 2.45-Å resolution crystal structure of a SOMAmer complexed with nerve growth factor that lacks any known nucleic acid motifs, instead adopting a configuration akin to a triangular prism. The SOMAmer utilizes extensive hydrophobic stacking interactions, non-canonical base pairing and irregular purine glycosidic bond angles to adopt a completely non-helical, compact S-shaped structure. Aromatic side chains contribute to folding by creating an unprecedented intercalating zipper-like motif and a prominent hydrophobic core. The structure provides compelling rationale for potent inhibitory activity of the SOMAmer and adds entirely novel motifs to the repertoire of structural elements uniquely available to SOMAmers.


Assuntos
DNA/química , Fator de Crescimento Neural/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Fator de Crescimento Neural/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Técnica de Seleção de Aptâmeros
5.
PLoS One ; 10(4): e0125010, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909780

RESUMO

Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.


Assuntos
Proteínas Ligantes de Maltose/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Apoproteínas/química , Apoproteínas/genética , Cristalização , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligantes , Proteínas Ligantes de Maltose/genética , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
6.
Neurotherapeutics ; 12(1): 49-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371167

RESUMO

Between 20% and 25% of patients diagnosed with Alzheimer's disease (AD) do not have amyloid burden as assessed by positron emission tomography imaging. Thus, there is a need for nonamyloid-directed therapies for AD, especially for those patients with non-amyloid AD. The family of phosphodiesterase-4 (PDE4) enzymes are underexploited therapeutic targets for central nervous system indications. While the PDE4A, B, and D subtypes are expressed in brain, the strict amino acid sequence conservation of the active site across the four subtypes of PDE4 has made it difficult to discover subtype inhibitors. The recent elucidation of the structure of the PDE4 N- and C-terminal regulatory domains now makes it possible to design subtype-selective, negative allosteric modulators (PDE4-NAMs). These act through closing the N-terminal UCR2 or C-terminal CR3 regulatory domains, and thereby inhibit the enzyme by blocking access of cyclic adenosine monophosphate (cAMP) to the active site. PDE4B-NAMs have the potential to reduce neuroinflammation by dampening microglia cytokine production triggered by brain amyloid, while PDE4D-NAMs have potent cognitive benefit by augmenting signaling through the cAMP/protein kinase A/cAMP response element-binding protein (CREB) pathway for memory consolidation. The importance of PDE4D for human cognition is underscored by the recent discovery of PDE4D mutations in acrodysostosis (ACRDY2: MIM 600129), an ultra rare disorder associated with intellectual disability. Thus, the family of PDE4 enzymes provides rich opportunities for the development of mechanistically novel drugs to treat neuroinflammation or the cognitive deficits in AD.


Assuntos
Doença de Alzheimer/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos
7.
Bioorg Med Chem Lett ; 24(16): 4031-4, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24998378

RESUMO

In this study we report a series of triazine derivatives that are potent inhibitors of PDE4B. We also provide a series of structure activity relationships that demonstrate the triazine core can be used to generate subtype selective inhibitors of PDE4B versus PDE4D. A high resolution co-crystal structure shows that the inhibitors interact with a C-terminal regulatory helix (CR3) locking the enzyme in an inactive 'closed' conformation. The results show that the compounds interact with both catalytic domain and CR3 residues. This provides the first structure-based approach to engineer PDE4B-selective inhibitors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Descoberta de Drogas , Inibidores de Fosfodiesterase/farmacologia , Triazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
8.
Cell Signal ; 26(3): 657-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361374

RESUMO

Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor -Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Domínio Catalítico/genética , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/síntese química , Sequência de Aminoácidos/genética , Anti-Inflamatórios/farmacologia , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Desenho de Fármacos , Macrófagos/metabolismo , Microglia/metabolismo , Modelos Moleculares , Monócitos/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Polimorfismo Genético , Fator de Necrose Tumoral alfa/biossíntese
9.
ISME J ; 7(6): 1150-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23407310

RESUMO

Bacteriophages encode auxiliary metabolic genes that support more efficient phage replication. For example, cyanophages carry several genes to maintain host photosynthesis throughout infection, shuttling the energy and reducing power generated away from carbon fixation and into anabolic pathways. Photodamage to the D1/D2 proteins at the core of photosystem II necessitates their continual replacement. Synthesis of functional proteins in bacteria requires co-translational removal of the N-terminal formyl group by a peptide deformylase (PDF). Analysis of marine metagenomes to identify phage-encoded homologs of known metabolic genes found that marine phages carry PDF genes, suggesting that their expression during infection might benefit phage replication. We identified a PDF homolog in the genome of Synechococcus cyanophage S-SSM7. Sequence analysis confirmed that it possesses the three absolutely conserved motifs that form the active site in PDF metalloproteases. Phylogenetic analysis placed it within the Type 1B subclass, most closely related to the Arabidopsis chloroplast PDF, but lacking the C-terminal α-helix characteristic of that group. PDF proteins from this phage and from Synechococcus elongatus were expressed and characterized. The phage PDF is the more active enzyme and deformylates the N-terminal tetrapeptides from D1 proteins more efficiently than those from ribosomal proteins. Solution of the X-ray/crystal structures of those two PDFs to 1.95 Å resolution revealed active sites identical to that of the Type 1B Arabidopsis chloroplast PDF. Taken together, these findings show that many cyanophages encode a PDF with a D1 substrate preference that adds to the repertoire of genes used by phages to maintain photosynthetic activities.


Assuntos
Amidoidrolases/química , Bacteriófagos/enzimologia , Bacteriófagos/genética , Synechococcus/virologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Bacteriófagos/classificação , Cristalografia por Raios X , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Especificidade por Substrato , Synechococcus/fisiologia
10.
Proc Natl Acad Sci U S A ; 109(49): 19971-6, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23139410

RESUMO

Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Proto-Oncogênicas c-sis/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Motivos de Aminoácidos/genética , Becaplermina , Cristalografia por Raios X , Primers do DNA/genética , Dados de Sequência Molecular , Estrutura Molecular , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-sis/química , Análise de Sequência de DNA , Temperatura de Transição
11.
PLoS Comput Biol ; 8(8): e1002657, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927809

RESUMO

Phages play critical roles in the survival and pathogenicity of their hosts, via lysogenic conversion factors, and in nutrient redistribution, via cell lysis. Analyses of phage- and viral-encoded genes in environmental samples provide insights into the physiological impact of viruses on microbial communities and human health. However, phage ORFs are extremely diverse of which over 70% of them are dissimilar to any genes with annotated functions in GenBank. Better identification of viruses would also aid in better detection and diagnosis of disease, in vaccine development, and generally in better understanding the physiological potential of any environment. In contrast to enzymes, viral structural protein function can be much more challenging to detect from sequence data because of low sequence conservation, few known conserved catalytic sites or sequence domains, and relatively limited experimental data. We have designed a method of predicting phage structural protein sequences that uses Artificial Neural Networks (ANNs). First, we trained ANNs to classify viral structural proteins using amino acid frequency; these correctly classify a large fraction of test cases with a high degree of specificity and sensitivity. Subsequently, we added estimates of protein isoelectric points as a feature to ANNs that classify specialized families of proteins, namely major capsid and tail proteins. As expected, these more specialized ANNs are more accurate than the structural ANNs. To experimentally validate the ANN predictions, several ORFs with no significant similarities to known sequences that are ANN-predicted structural proteins were examined by transmission electron microscopy. Some of these self-assembled into structures strongly resembling virion structures. Thus, our ANNs are new tools for identifying phage and potential prophage structural proteins that are difficult or impossible to detect by other bioinformatic analysis. The networks will be valuable when sequence is available but in vitro propagation of the phage may not be practical or possible.


Assuntos
Bacteriófagos/fisiologia , Redes Neurais de Computação , Proteínas Virais/química , Bacteriófagos/genética , Genes Virais , Fases de Leitura Aberta
12.
Cell ; 148(3): 421-33, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304913

RESUMO

Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKß-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Envelhecimento/metabolismo , Restrição Calórica , Transdução de Sinais , Estilbenos/administração & dosagem , 3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Dieta , Intolerância à Glucose/prevenção & controle , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Modelos Moleculares , Músculo Esquelético/efeitos dos fármacos , NAD/metabolismo , Obesidade/prevenção & controle , Proteínas Quinases/metabolismo , Resveratrol , Rolipram/administração & dosagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sirtuína 1/metabolismo
13.
Handb Exp Pharmacol ; (204): 167-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695640

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors have shown benefit in human clinical trials but dosing is limited by tolerability, particularly because of emesis. Novel cocrystal structures of PDE4 catalytic units with their regulatory domains together with bound inhibitors have revealed three different PDE4 conformers that can be exploited in the design of novel therapeutic agents. The first is an open conformer, which has been employed in the traditional approach to the design of competitive PDE4 inhibitors. The second is an asymmetric dimer in which a UCR2 regulatory helix from one monomer is placed in a closed conformation over the opposite active site in the PDE4 dimer (trans-capping). Only one active site can be closed by an inhibitor at a time with the consequence that compounds exploiting this conformer only partially inhibit PDE4 enzymatic activity while retaining potency in cellular and in vivo models. By placing an intrinsic ceiling on the magnitude of PDE4 inhibition, such compounds may better maintain spatial and temporal patterning of signaling in cAMP microdomains with consequent improved tolerability. The third is a symmetric PDE4 conformer in which helices from the C-terminal portion of the catalytic unit cap both active sites (cis-capping). We propose that dual-gating of PDE4 activity may be further fine tuned by accessory proteins that recognize open or closed conformers of PDE4 regulatory helices.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
Nucleic Acids Res ; 39(11): 4808-17, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21300644

RESUMO

It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3'-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme.


Assuntos
Clivagem do DNA , DNA Topoisomerase IV/química , DNA/química , Metais/química , Cátions Bivalentes/química , DNA/metabolismo , DNA Topoisomerase IV/metabolismo , Escherichia coli/enzimologia , Fosfatos/química
15.
Nature ; 465(7298): 641-4, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20485342

RESUMO

Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.


Assuntos
DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA/química , DNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , DNA/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Tirosina
16.
Nat Biotechnol ; 28(1): 63-70, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20037581

RESUMO

Phosphodiesterase 4 (PDE4), the primary cAMP-hydrolyzing enzyme in cells, is a promising drug target for a wide range of conditions. Here we present seven co-crystal structures of PDE4 and bound inhibitors that show the regulatory domain closed across the active site, thereby revealing the structural basis of PDE4 regulation. This structural insight, together with supporting mutagenesis and kinetic studies, allowed us to design small-molecule allosteric modulators of PDE4D that do not completely inhibit enzymatic activity (I(max) approximately 80-90%). These allosteric modulators have reduced potential to cause emesis, a dose-limiting side effect of existing active site-directed PDE4 inhibitors, while maintaining biological activity in cellular and in vivo models. Our results may facilitate the design of CNS therapeutics modulating cAMP signaling for the treatment of Alzheimer's disease, Huntington's disease, schizophrenia and depression, where brain distribution is desired for therapeutic benefit.


Assuntos
Cognição/efeitos dos fármacos , Desenho de Fármacos , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Bioensaio , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Modelos Animais de Doenças , Humanos , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/uso terapêutico , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Vômito/tratamento farmacológico
17.
Biochemistry ; 48(38): 8940-7, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19697956

RESUMO

Human topoisomerase IIalpha utilizes a two-metal-ion mechanism for DNA cleavage. One of the metal ions (M(1)(2+)) is believed to make a critical interaction with the 3'-bridging atom of the scissile phosphate, while the other (M(2)(2+)) is believed to interact with a nonbridging oxygen of the scissile phosphate. Based on structural and mutagenesis studies of prokaryotic nucleic acid enzymes, it has been proposed that the active site divalent metal ions interact with type II topoisomerases through a series of conserved acidic amino acid residues. The homologous residues in human topoisomerase IIalpha are E461, D541, D543, and D545. To address the validity of these assignments and to delineate interactions between individual amino acids and M(1)(2+) and M(2)(2+), we individually mutated each of these acidic amino acid residues in topoisomerase IIalpha to either cysteine or alanine. Mutant enzymes displayed a marked loss of catalytic and DNA cleavage activity as well as a reduced affinity for divalent metal ions. Additional experiments determined the ability of wild-type and mutant topoisomerase IIalpha enzymes to cleave an oligonucleotide substrate that contained a sulfur atom in place of the 3'-bridging oxygen of the scissile phosphate in the presence of Mg2+, Mn2+, or Ca2+. On the basis of the results of these studies, we conclude that the four acidic amino acid residues interact with metal ions in the DNA cleavage/ligation active site of topoisomerase IIalpha. Furthermore, we propose that M(1)(2+) interacts with E461, D543, and D545 and M(2)(2+) interacts with E461 and D541.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Antígenos de Neoplasias/genética , Sequência de Bases , Domínio Catalítico/genética , Cátions Bivalentes/metabolismo , Sequência Conservada , DNA/genética , Primers do DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Humanos , Técnicas In Vitro , Cinética , Metais/metabolismo , Modelos Químicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
J Med Chem ; 52(15): 4694-715, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19618939

RESUMO

We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/síntese química , Epóxido Hidrolases/antagonistas & inibidores , Metabolômica , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Epóxido Hidrolases/química , Humanos , Ligação de Hidrogênio , Relação Estrutura-Atividade
19.
Biochemistry ; 48(9): 1862-9, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19222228

RESUMO

All type II topoisomerases require divalent metal ions to cleave and ligate DNA. To further elucidate the mechanistic basis for these critical enzyme-mediated events, the role of the metal ion in the DNA cleavage reaction of human topoisomerase IIbeta was characterized and compared to that of topoisomerase IIalpha. This study utilized divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that substituted a sulfur atom for the 3'-bridging oxygen or the nonbridging oxygens of the scissile phosphate. On the basis of time courses of DNA cleavage, cation titrations, and metal ion mixing experiments, we propose the following model for the use of divalent metal ions by human type II topoisomerases. First, both enzymes employ a two-metal ion mechanism to support DNA cleavage. Second, an interaction between one divalent metal ion and the 3'-bridging atom of the scissile phosphate greatly enhances enzyme-mediated DNA cleavage, most likely by stabilizing the leaving 3'-oxygen. Third, there is an important interaction between a divalent second metal ion and a nonbridging atom of the scissile phosphate that stimulates DNA cleavage mediated by topoisomerase IIbeta. If this interaction exists in topoisomerase IIalpha, its effects on DNA cleavage are equivocal. This last aspect of the model highlights a difference in metal ion utilization during DNA cleavage mediated by human topoisomerase IIalpha and IIbeta.


Assuntos
Cátions Bivalentes/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Sequência de Bases , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes/química , DNA/genética , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
Nucleic Acids Res ; 36(15): 4883-93, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18653531

RESUMO

The DNA cleavage reaction of human topoisomerase IIalpha is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3'-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3'-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase IIalpha mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3'-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3'-oxygen.


Assuntos
Antígenos de Neoplasias/química , Clivagem do DNA , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/química , Metais/química , Modelos Químicos , Antígenos de Neoplasias/metabolismo , Cátions Bivalentes/química , DNA/química , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA